СМИ о нас
06.04.24 | 06.04.2024 Московский комсомолец. День открытых дверей состоится в пущинской радиоастрономической обсерватории |
Прикоснуться к бездонным глубинам космоса и вселенной приглашает Пущинская радиоастрономическая обсерватория (ПРАО АКЦ ФИАН) 13 апреля.
День открытых дверей ПРАО АКЦ ФИАН посвящен Дню рождения обсерватории (11 апреля), и 12 апреля 1961 года, когда в космос полетел Юрий Гагарин и Дню рождения Пущинского научного центра.
К сотрудникам ПРАО АКЦ ФИАН для проведения мероприятия присоединяются партнёры из других учреждений, клубов любителей астрономии, творческих коллективов и просто неравнодушные люди.
В рамках мероприятия пущинские учёные проведут экскурсии, покажут три уникальных радиотелескопа, каждый из которых на момент постройки был самым крупным в мире. Также гостям расскажут о космических проектах, в которых принимала участие обсерватория.
Вечером для всех участников Дня открытых дверей будут организованы звездные наблюдения с оптическими телескопами, также тематические мастер-классы, игры для детей, концертная программа. Начало экскурсии – в 15-00 (или в 16-30) от проходной обсерватории, вход свободный.
05.04.24 | 05.04.2024 За науку. Российские физики доказали преимущество трехуровневых кубитов |
Ученые доказали, что они могут успешно моделировать сложные физические процессы и требуют при этом меньшего числа логических элементов, чем квантовые устройства на базе «традиционных» двухуровневых кубитов. Результаты исследования опубликованы в журнале Physical Review A (Q1).
В квантовых вычислительных машинах в роли логических элементов используются кубиты — квантовые биты. Если классические биты могут принимать только одно из двух значений — 0 или 1, то квантовые могут находиться в суперпозиции нескольких состояний, каждое из которых при измерении кубита реализуется с заданной вероятностью. Это свойство кубитов дает квантовым машинам способность решать многие задачи, практически недоступные для самых мощных классических компьютеров, например разложение на множители больших чисел (факторизация).
Обычно в квантовых компьютерах используют двухуровневые кубиты, которые могут быть в суперпозиции двух состояний, однако существуют и многоуровневые кубиты — их называют кудитами, — в которых может кодироваться три (это кутриты) или больше состояний. Их возможности и проверили авторы исследования.
«Использование кутритов позволяет не только более плотно кодировать квантовую информацию, но и решать некоторые задачи более эффективно, используя меньше ресурсов. Именно это свойство мы и продемонстрировали в нашем эксперименте. Мы показали, что динамику простейшей PT-симметричной системы можно посчитать, используя всего один кутрит, в то время как кубитов в этом случае понадобилось бы больше», — говорит ведущий автор исследования, директор Физического института им П. Н. Лебедева РАН (ФИАН), профессор кафедры квантовой радиофизики МФТИ Николай Колачевский.
Кубиты могут создаваться на базе разных объектов — на основе ионов, холодных атомов, дефектов в кристаллических решетках алмазов, сверхпроводящих контактов, которые играют роль логических элементов и на которых можно запускать алгоритмы вычислений. ФИАН с 2020 года разрабатывает квантовые устройства на базе ионов иттербия. Одно из этих устройств, и второе — на основе сверхпроводящих контактов Джозефсона (трансмонов) — были использованы в эксперименте.
Авторы статьи, физики из ФИАН, МФТИ, Российского квантового центра и МИСиС, с помощью обоих устройств смоделировали процесс нарушения пространственно-временной симметрии в физической системе. Симметрия — одно из основополагающих свойств физического мира, многие из физических законов остаются верными в «зеркальном мире», если мы, например, поменяем у всех частиц заряды на обратные, зеркально изменим их расположение в пространстве или запустим время в обратную сторону. Однако экспериментаторы обнаружили процессы, нарушающие симметрию. В частности, именно одно из таких нарушений лежит в основе механизма Хиггса, обеспечивающего массу элементарных частиц.
Физики моделировали систему с PT-симметрией, симметрией пространства и времени, где два уровня кутрита «работали» как сама система, а третий симулировал внешнюю для нее среду.
https://arxiv.org/html/2310.20432v2
«В результате эксперимента оба вычислителя показали очень близкие результаты, имеющие хорошее совпадение с теоретической моделью. Так мы продемонстрировали преимущества цифрового подхода в квантовых вычислениях. Используемые нами вычислители, ионный и сверхпроводниковый, устроены совершенно по-разному. Но каждый из них поддерживает свой набор команд, как и обычный процессор в наших компьютерах. Мы можем превратить любую задачу в последовательность понятных каждому из имеющихся вычислителей команд», — объясняет Илья Заливако, научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН.
По словам ученых, они рассчитывают, используя преимущества кудитных систем над кубитными, продемонстрировать работу ряда алгоритмов, где наличие дополнительных уровней существенно сокращает требуемые для вычислений ресурсы. Например, в приложении к алгоритму Гровера, помогающему искать по неупорядоченным базам данных или вычислять обратные функции.
https://zanauku.mipt.ru/2024/04/05/rossijskie-fiziki-dokazali-preimushhestvo-trehurovnevyh-kubitov/
05.04.24 | 04.04.2024 Атомная Энергия 2.0. ФИАН, МФТИ, Российский квантовый центр и МИСиС успешно доказали преимущество трехуровневых кубитов |
Физики провели успешные «сравнительные испытания» трехуровневых квантовых вычислительных устройств на базе ионов и сверхпроводящих контактов и доказали, что они могут успешно моделировать сложные физические процессы и требуют при этом меньшего числа логических элементов, чем квантовые устройства на базе «традиционных» двухуровневых кубитов. Результаты исследования опубликованы в журнале Physical Review A (Q1).
В квантовых вычислительных машинах в роли логических элементов используются кубиты – квантовые биты. Если классические биты могут принимать только одно из двух значений – 0 или 1, то квантовые могут находиться в суперпозиции нескольких состояний, каждое из которых при измерении кубита реализуется с заданной вероятностью. Это свойство кубитов дает квантовым машинам способность решать многие задачи, практически недоступные для самых мощных классических компьютеров, например, разложение на множители больших чисел – факторизация.
Обычно в квантовых компьютерах используют двухуровневые кубиты, которые могут быть в суперпозиции двух состояний, однако существуют и многоуровневые кубиты – их называют кудитами, в которых может кодироваться три (это кутриты) или больше состояний. Их возможности и проверили авторы исследования.
«Использование кутритов позволяет не только более плотно кодировать квантовую информацию, но и решать некоторые задачи более эффективно, используя меньше ресурсов. Именно это свойство мы и продемонстрировали в нашем эксперименте. Мы экспериментально показали, что динамику простейшей PT-симметричной системы можно посчитать используя всего один кутрит, в то время как кубитов в этом случае понадобилось бы больше», – говорит ведущий автор исследования, директор Физического института им П.Н. Лебедева РАН (ФИАН) Николай Колачевский.
Кубиты могут создаваться на базе разных объектов – на основе ионов, холодных атомов, дефектов в кристаллических решетках алмазов, сверхпроводящих контактов, которые играют роль логических элементов, на которых можно запускать алгоритмы вычислений. ФИАН с 2020 года разрабатываетexternal link, opens in a new tab квантовые устройства на базе ионов иттербия. Одно из этих устройств и второе – на основе сверхпроводящих контактов Джозефсона (трансмонов), были использовано в эксперименте.
Авторы статьи, физики из ФИАН, МФТИ, Российского квантового центра и МИСиС с помощью обоих устройств смоделировали процесс нарушения пространственно-временной симметрии в физической системе. Симметрия – одно из основополагающих свойств физического мира, многие из физических законов остаются верными в «зеркальном мире», если мы, например, поменяем у всех частиц заряды на обратные, зеркально изменим их расположение в пространстве или запустим время в обратную сторону. Однако экспериментаторы обнаружили процессы, нарушающие симметрию, в частности, именно одно из таких нарушений лежит в основе механизма Хиггса, обеспечивающего массу элементарных частиц.
Физики моделировали систему с PT-симметрией, симметрией пространства и времени, где два уровня кутрита «работали» как сама система, а третий симулировали внешнюю для нее среду.
https://arxiv.org/html/2310.20432v2
«В результате эксперимента оба вычислителя показали очень близкие результаты, имеющие хорошее совпадение с теоретической моделью. Так мы продемонстрировали преимущества цифрового подхода в квантовых вычислениях. Используемые нами вычислители – ионный и сверхпроводниковый, устроены совершенно по-разному. Но каждый из них поддерживает свой набор команд, как и обычный процессор в наших компьютерах. Мы можем превратить любую задачу в последовательность понятных каждому из имеющихся вычислителей команд», – объясняет Илья Заливако, научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН.
По словам ученых, они рассчитывают, используя преимущества кудитных систем над кубитными, продемонстрировать работу ряда алгоритмов, где наличие дополнительные уровни существенно сокращает требуемые для вычислений ресурсы. Например, в приложении к алгоритму Гровера, помогающему искать по неупорядоченным базам данных или вычислять обратные функции.
Источник: ФИАН
05.04.24 | 04.04.2024 Российская академия наук. Российские физики доказали преимущество трёхуровневых кубитов |
Физики провели успешные «сравнительные испытания» трёхуровневых квантовых вычислительных устройств на базе ионов и сверхпроводящих контактов и доказали, что они могут успешно моделировать сложные физические процессы и требуют при этом меньшего числа логических элементов, чем квантовые устройства на базе «традиционных» двухуровневых кубитов. Результаты исследования опубликованs в журнале Physical Review A (Q1).
В квантовых вычислительных машинах в роли логических элементов используются кубиты — квантовые биты. Если классические биты могут принимать только одно из двух значений — 0 или 1, то квантовые могут находиться в суперпозиции нескольких состояний, каждое из которых при измерении кубита реализуется с заданной вероятностью. Это свойство кубитов дает квантовым машинам способность решать многие задачи, практически недоступные для самых мощных классических компьютеров, например, разложение на множители больших чисел — факторизация.
Обычно в квантовых компьютерах используют двухуровневые кубиты, которые могут быть в суперпозиции двух состояний, однако существуют и многоуровневые кубиты — их называют кудитами, в которых может кодироваться три (это кутриты) или больше состояний. Их возможности и проверили авторы исследования.
«Использование кутритов позволяет не только более плотно кодировать квантовую информацию, но и решать некоторые задачи более эффективно, используя меньше ресурсов. Именно это свойство мы и продемонстрировали в нашем эксперименте. Мы экспериментально показали, что динамику простейшей PT-симметричной системы можно посчитать используя всего один кутрит, в то время как кубитов в этом случае понадобилось бы больше», — говорит ведущий автор исследования, директор Физического института им П.Н. Лебедева РАН (ФИАН) Николай Колачевский.
Кубиты могут создаваться на базе разных объектов — на основе ионов, холодных атомов, дефектов в кристаллических решётках алмазов, сверхпроводящих контактов, которые играют роль логических элементов, на которых можно запускать алгоритмы вычислений. ФИАН с 2020 года разрабатывает квантовые устройства на базе ионов иттербия. Одно из этих устройств и второе — на основе сверхпроводящих контактов Джозефсона (трансмонов), были использовано в эксперименте.
Авторы статьи, физики из ФИАН, МФТИ, Российского квантового центра и МИСиС с помощью обоих устройств смоделировали процесс нарушения пространственно-временной симметрии в физической системе. Симметрия — одно из основополагающих свойств физического мира, многие из физических законов остаются верными в «зеркальном мире», если мы, например, поменяем у всех частиц заряды на обратные, зеркально изменим их расположение в пространстве или запустим время в обратную сторону. Однако экспериментаторы обнаружили процессы, нарушающие симметрию, в частности, именно одно из таких нарушений лежит в основе механизма Хиггса, обеспечивающего массу элементарных частиц.
Физики моделировали систему с PT-симметрией, симметрией пространства и времени, где два уровня кутрита «работали» как сама система, а третий симулировали внешнюю для неё среду.
«В результате эксперимента оба вычислителя показали очень близкие результаты, имеющие хорошее совпадение с теоретической моделью. Так мы продемонстрировали преимущества цифрового подхода в квантовых вычислениях. Используемые нами вычислители — ионный и сверхпроводниковый, устроены совершенно по-разному. Но каждый из них поддерживает свой набор команд, как и обычный процессор в наших компьютерах. Мы можем превратить любую задачу в последовательность понятных каждому из имеющихся вычислителей команд», — объясняет Илья Заливако, научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН.
По словам учёных, они рассчитывают, используя преимущества кудитных систем над кубитными, продемонстрировать работу ряда алгоритмов, где наличие дополнительные уровни существенно сокращает требуемые для вычислений ресурсы. Например, в приложении к алгоритму Гровера, помогающему искать по неупорядоченным базам данных или вычислять обратные функции.
Источник: отдел по связям с общественностью ФИАН.
05.04.24 | 04.04.2024 Научная Россия. Российские физики доказали преимущество трехуровневых кубитов |
Физики провели успешные «сравнительные испытания» трехуровневых квантовых вычислительных устройств на базе ионов и сверхпроводящих контактов и доказали, что они могут успешно моделировать сложные физические процессы и требуют при этом меньшего числа логических элементов, чем квантовые устройства на базе «традиционных» двухуровневых кубитов. Результаты исследования опубликованы в журнале Physical Review A (Q1).
В квантовых вычислительных машинах в роли логических элементов используются кубиты – квантовые биты. Если классические биты могут принимать только одно из двух значений – 0 или 1, то квантовые могут находиться в суперпозиции нескольких состояний, каждое из которых при измерении кубита реализуется с заданной вероятностью. Это свойство кубитов дает квантовым машинам способность решать многие задачи, практически недоступные для самых мощных классических компьютеров, например, разложение на множители больших чисел – факторизация.
Обычно в квантовых компьютерах используют двухуровневые кубиты, которые могут быть в суперпозиции двух состояний, однако существуют и многоуровневые кубиты – их называют кудитами, в которых может кодироваться три (это кутриты) или больше состояний. Их возможности и проверили авторы исследования.
«Использование кутритов позволяет не только более плотно кодировать квантовую информацию, но и решать некоторые задачи более эффективно, используя меньше ресурсов. Именно это свойство мы и продемонстрировали в нашем эксперименте. Мы экспериментально показали, что динамику простейшей PT-симметричной системы можно посчитать, используя всего один кутрит, в то время как кубитов в этом случае понадобилось бы больше», – говорит ведущий автор исследования, директор Физического института им П.Н. Лебедева РАН (ФИАН) Николай Колачевский.
Кубиты могут создаваться на базе разных объектов – на основе ионов, холодных атомов, дефектов в кристаллических решетках алмазов, сверхпроводящих контактов, которые играют роль логических элементов, на которых можно запускать алгоритмы вычислений. ФИАН с 2020 года разрабатывает квантовые устройства на базе ионов иттербия. Одно из этих устройств и второе – на основе сверхпроводящих контактов Джозефсона (трансмонов) – были использованы в эксперименте.
Авторы статьи, физики из ФИАН, МФТИ, Российского квантового центра и МИСИС с помощью обоих устройств смоделировали процесс нарушения пространственно-временной симметрии в физической системе. Симметрия – одно из основополагающих свойств физического мира, многие из физических законов остаются верными в «зеркальном мире», если мы, например, поменяем у всех частиц заряды на обратные, зеркально изменим их расположение в пространстве или запустим время в обратную сторону. Однако экспериментаторы обнаружили процессы, нарушающие симметрию, в частности, именно одно из таких нарушений лежит в основе механизма Хиггса, обеспечивающего массу элементарных частиц.
Физики моделировали систему с PT-симметрией, симметрией пространства и времени, где два уровня кутрита «работали» как сама система, а третий симулировал внешнюю для нее среду.
«В результате эксперимента оба вычислителя показали очень близкие результаты, имеющие хорошее совпадение с теоретической моделью. Так мы продемонстрировали преимущества цифрового подхода в квантовых вычислениях. Используемые нами вычислители – ионный и сверхпроводниковый – устроены совершенно по-разному. Но каждый из них поддерживает свой набор команд, как и обычный процессор в наших компьютерах. Мы можем превратить любую задачу в последовательность понятных каждому из имеющихся вычислителей команд», – объясняет Илья Заливако, научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН.
По словам ученых, они рассчитывают, используя преимущества кудитных систем над кубитными, продемонстрировать работу ряда алгоритмов, где наличие дополнительных уровней существенно сокращает требуемые для вычислений ресурсы. Например, в приложении к алгоритму Гровера, помогающему искать по неупорядоченным базам данных или вычислять обратные функции.
Информация и фото предоставлены отделом по связям с общественностью ФИАН
https://scientificrussia.ru/articles/rossijskie-fiziki-dokazali-preimusestvo-trehurovnevyh-kubitov
05.04.24 | 04.04.2024 Телеграм-канал РАН. Российские физики доказали преимущество трёхуровневых кубитов |
Успешные «сравнительные испытания» трёхуровневых квантовых вычислительных устройств на базе ионов и сверхпроводящих контактов провели учёные Физического института им П.Н. Лебедева РАН @lpi_ras, МФТИ, Российского квантового центра и МИСиС.
Обычно в квантовых компьютерах используют двухуровневые кубиты, которые могут быть в суперпозиции двух состояний, однако существуют и многоуровневые кубиты — их называют кудитами, в которых может кодироваться три (это кутриты) или больше состояний. Их возможности и проверили авторы исследования.
«Использование кутритов позволяет не только более плотно кодировать квантовую информацию, но и решать некоторые задачи более эффективно, используя меньше ресурсов. Именно это свойство мы и продемонстрировали в нашем эксперименте. Мы экспериментально показали, что динамику простейшей PT-симметричной системы можно посчитать, используя всего один кутрит, в то время как кубитов в этом случае понадобилось бы больше», — рассказал ведущий автор исследования, директор ФИАН, член-корреспондент РАН Николай Колачевский.
Институт с 2020 года разрабатывает квантовые устройства на базе ионов иттербия. В эксперименте было использовано одно из этих устройств и второе — на основе сверхпроводящих контактов Джозефсона (трансмонов).
04.04.24 | 04.04.2024 Техкульт. Российские специалисты предложили разместить телескоп на Луне |
В Астрокосмическом центре ФИАН предлагают разместить на Луне научный телескоп — он будет работать с наземной антенной сетью в субтерагерцовых электромагнитных волнах и поможет астрономам в более качественном изучении Вселенной и черных дыр.
Данное предложение сделано учеными по итогам определения перспектив дальнейшего развития в стране субтерагерцовой астрономии с использованием волн с частотами от 100 ГГц для детальных наблюдений за отдаленными объектами, а также черными дырами. При этом на сегодня в России попросту нет телескопов, работающих на частотах более 100 ГГц.
Как уверяют в ФИАН, совместное использование лунного телескопа и подобной наземной инфраструктуры позволит получать снимки черных дыр с высоким разрешением — до 30 раз бóльшим, чем у телескопа ETH. Мало того, подобная обсерватория на лунной поверхности даст возможность проведения более широких исследований Вселенной и поможет разобраться с рядом проблем звездообразования.
Специалисты ФИАН предлагают создать шесть специальных антенн, имеющих диаметр порядка 8 метров и работающих с субтерагерцовым излучением. Они разместятся на горе Маяк в Дагестане или на пике Хулугайша в горных Саянах.
Подобный набор, включающий шесть таких же антенн, необходимо разместить и на Луне, для чего требуется подобрать подходящий кратер, который постоянно затенен, или участок в приполярных районах земного спутника.
04.04.24 | 03.04.2024 Вестник России. Российские ученые рассказали об атомной обсерватории на луне |
Ученые из Астрокосмического центра Физического института им. Лебедева РАН представили концепцию автономной обсерватории на Луне. Руководитель центра, Алексей Рудницкий, поделился деталями этого проекта в интервью сайту MK.ru.
Обсерватория позволит изучать биоорганические молекулы, потенциально способные породить жизнь на Земле, а также проводить исследования гравитации, пространства-времени и космических объектов. Планируется разместить на поверхности Луны четыре телескопа с зеркалами диаметром до четырех метров, без необходимости присутствия человека на Луне.
В настоящее время ведутся концептуальные исследования, чтобы определить местоположение обсерватории на Луне: в кратере, на темной или видимой стороне спутника. Есть также вариант разместить телескопы на подвижной платформе для изменения их дислокации.
Алексей Рудницкий также отметил, что создание подобной сети обсерваторий на Земле будет поддерживать работу космических спутников и приведет к значительным научным открытиям. Он выразил уверенность, что российские разработки не будут уступать тем, которые предложил американский предприниматель Илон Маск.
04.04.24 | 03.04.2024 Атомная Энергия 2.0. Российские астрономы предложили построить на Луне телескоп для изучения черных дыр |
Астрокосмический центр Физического института имени П. Н. Лебедева (ФИАН) хочет объединить телескоп субтерагерцевого диапазона в приполярных областях Луны с наземным. За счет этого можно получить часть возможностей телескопа диаметром в 400 тысяч километров. Несмотря на кажущуюся здравость, у предложения есть серьезные слабые места.
Субтерагерцевым называют диапазон с длинами волн миллиметровой и субмиллиметровой длины (100-1000 гигагерц). В астрономии он считается крайне перспективным: в космосе веществ, поглощающих в этой части спектра, довольно мало, поэтому сигналы в нем распространяются по Вселенной в среднем заметно лучше. Даже с Земли удается получить неплохие данные: скажем, Телескоп горизонта событий смог получить изображения окрестностей черных дыр в центре нашей Галактики и в галактике M87. Проблема в том, что земная атмосфера поглощает такие волны довольно сильно.
Неудивительно, что Астрокосмический центр ФИАН активно работает над созданием космической обсерватории «Миллиметрон» («Спектр-М») 10-метрового диаметра. Ее планируют разместить в космосе, на расстоянии примерно 1,5 миллиона километров от Земли. За счет взаимодействия с наземными обсерваториями космическая обсерватория сможет дать эффект «виртуального телескопа» с диаметром 1,5 миллиона километров.
Однако при планировании «Миллиметрона» были приняты неверные решения: как и для российской космонавтики в целом, предполагалась максимально активная кооперация с другими странами. Систему для охлаждения телескопа до минус 250 с лишним градусов собирались импортировать, как и гетеродинный блок. Но, как и следовало ожидать, иностранные партнеры от участия отказались (кроме Китая, который сам не может сделать наиболее сложные блоки), поэтому в 2022 году было принято решение изготовить наиболее сложные блоки своими силами.
Хотя этому нельзя не порадоваться, ясно, что так запуск «Миллиметрона» задержится на несколько лет. Кроме того, на сегодня все еще не ясно, получится ли у российских исполнителей сделать систему охлаждения до минус 250 градусов (в идеале даже ниже) для космических условий, или придется ограничиться минус 220 градусами и, соответственно, меньшей чувствительностью телескопа.
В новой работе в журнале Cosmic Research ученые из Астрокосмического центра ФИАН рассмотрели несколько альтернативных концепций обсерваторий субтерагерцевого диапазона. О работе также сообщает сайт ФИАН. Помимо космического компонента класса «Миллиметрон», они изучают варианты наземной субтерагерцевой антенной решетки, то есть массива из малого диаметра. Другой вариант — телескоп на поверхности Луны.
Прототип решетки для отработки ключевых технологий будет состоять из трех-шести антенн диаметром от трех до пяти метров. Исходно его установят и протестируют в Пущинской радиоастрономической обсерватории. По завершении испытаний ученые предполагают создать на основе этого прототипа полноценную обсерваторию субтерагерцевого диапазона. В ее состав должны включить шесть полноповоротных антенн диаметром до восьми метров каждая и с качеством поверхности антенн приблизительно 40 микрон. Угловое разрешение получившегося инструмента достигнет 0,59’’ угловых секунд. Разместить антенную решетку планируют либо на локальном плато на горе Маяк в Дагестане (2352 метра), либо на пике Хулугайша в Саянах (3015 метров).
Но есть среди рассмотренных вариантов и куда более амбициозный: размещение сходного с наземным телескопа внутри одного из лунных кратеров приполярной вечной тени. Так называют кратеры на Луне, куда никогда не заглядывает солнце. На Земле или Марсе с Венерой таких мест нет, поскольку у них существенный наклон оси вращения (цикл «зима — лето»). Но у Луны наклон оси вращения радикально меньше, и примерно 300 кратеров там всегда затенены.
Ученые из Астрокосмического центра отметили, что нагрузка на системы охлаждения — пока что ахиллесову пяту российского «Миллиметрона» — в кратере вечной тьмы будет минимальной. Оценочно температура там в районе минус 220 градусов даже без дополнительного охлаждения. Есть надежда, что в подобных условиях даже умеренно продвинутые системы охлаждения смогут дать минус 250 градусов, необходимые для высокой чувствительности системы.
По словам авторов исследования, такая лунная антенная решетка, работая в паре с наземной сетью телескопов того же диапазона, позволит увидеть тени черных дыр с разрешением до 30 раз выше, чем у Телескопа горизонта событий. Это, разумеется, существенно продвинет понимание физики сверхмассивных черных дыр (и серьезно поможет в решении других астрономических вопросов).
Такой сценарий выглядит довольно здраво, но лишь если не учитывать ряд практических сложностей. Ключевая из них — лунный реголит. По опыту экспедиций программы «Аполлон» известно, что он быстро налипает на любые техногенные конструкции на Луне и очень плохо счищается. Пыль на чувствительных системах типа телескопов — огромная проблема, способная катастрофически уронить качество получаемых ими данных. Да, как уже писал Naked Science, приполярные области сложены вечной мерзлотой, что может снижать объем лунной пыли в кратерах вечной тьмы. Но насколько именно — на сегодня решительно неизвестно.
Вторая существенная проблема заключается в том, что в таком варианте проект из одного, пусть и непростого, космического аппарата превратится в набор из нескольких отдельно стоящих на Луне антенн. Им потребуется и более мощный источник энергоснабжения, а также передающий кабель от модуля с солнечными батареями вне кратера вечной тьмы до самого кратера. Такое нельзя будет реализовать без, по сути, альпинистских работ в лунных условиях. Учитывая, что скафандры для естественного спутника Земли весят больше центнера, подобные операции в них могут быть нереалистичны (до первых пилотируемых экспедиций в такие зоны это точно не узнать). Тем более такое недоступно роботам.
Авторы работы предложили вариант размещения радиотелескопов вне кратеров — в зонах, освещаемых солнцем, хотя и у полюсов. Однако в таком случае реализация охлаждения станет весьма проблематичной: за двухнедельные лунные сутки даже у полюсов открыто расположенные телескопы серьезно нагреет. Чем это лучше намного более компактного и менее материалоемкого «Миллиметрона» — неясно.
Наконец, вопросы вызывают и сроки реализации мегателескопа на Селене. У России на сегодня нет небумажных работ по лунной сверхтяжелой ракете. То есть ранее 2030-х пилотируемые полеты на Луну у нас не случатся (а без людей реализовать столь сложные конструкции вне Земли невозможно). К тому времени «Миллиметрон» явно будет радикально ближе к технической реализации, чем циклопический проект строительства Лунной антенной решетки. Возможно, понимая это, авторы статьи рассматривают и вариант с группой чисто космических телескопов — функциональных аналогов «Миллиметрона».
04.04.24 | 03.04.2024 Коммерсант. Российские ученые создают самые зоркие телескопы |
Ученые из Астрокосмического центра Физического института им. П. Н. Лебедева РАН разрабатывают сразу несколько концепций субтерагерцевых (частоты от 100 ГГц и выше) обсерваторий нового поколения. В их числе планируется создать компактную наземную антенную решетку, космический интерферометр, а также телескоп, расположенный на поверхности Луны.
Наземные антенные решетки смогут работать совместно с наземными телескопами, а также с космической обсерваторией «Миллиметрон» в режиме интерферометра со сверхдлинной базой.
Последнее десятилетие ознаменовалось значительными успехами в изучении Вселенной в субтерагерцевом, то есть в миллиметровом и субмиллиметровом, диапазоне спектра (частоты от 100 до 1000 ГГц). Во многом этому способствовали успехи космических миссий Herschel и James Webb Telescope. Но большой успех сопутствовал и наземным проектам, таким как телескоп IRAM, интерферометр NOEMA и антенная решетка ALMA. Важным результатом наземных наблюдений стало получение Телескопом горизонта событий (Event Horizon Telescope, или EHT) изображений сверхмассивных черных дыр в центре нашей Галактики и в галактике M87.
Наблюдения в субтерагерцевой части спектра затрагивают наиболее актуальные вопросы современной астрофизики. Это эволюция ранней Вселенной, процессы образования звезд и планет, поиск и изучение сложных органических соединений в межзвездной среде и молодых звездных системах, а также исследование компактных сверхмассивных объектов. Дело в том, что межзвездная среда более прозрачна на субтерагерцевых частотах по сравнению с радио- или инфракрасным диапазоном. Это дает уникальную возможность непосредственно наблюдать сверхмассивные черные дыры в активных ядрах галактик и исследовать поведение вещества в столь экстремальных условиях. Другой нерешенный вопрос связан с формированием «строительных блоков», из которых образовались на нашей планете первые молекулы-репликаторы. Существует предположение, что они появились еще на этапе формирования планеты или даже звездной системы. Причем в количестве, достаточном для детектирования будущими обсерваториями. Отдельная задача связана с изучением ранней Вселенной и поиском искажений в спектре реликтового излучения.
В ближайшем будущем планируется создание новых обсерваторий субтерагерцевого диапазона. Будет развиваться уже существующая наземная сеть телескопов-интерферометров со сверхдлинными базами (РСДБ), к ней добавят новые инструменты. Однако на высоких частотах возможности наземных обсерваторий существенно ограничены атмосферой Земли. Еще одна проблема состоит в том, что на обширных пространствах северо-востока Евразии нет обсерваторий субтерагерцевого диапазона. Это белое пятно на карте покрытия наземной сети телескопов негативно влияет на качество их наблюдений. Также прорабатываются новые концепции космических обсерваторий и интерферометров. Например, SMVA (Space Millimeter VLBI Array), EHI (Event Horizon Imager), THEZA (TeraHertz Exploration and Zooming-in for Astrophysics) и CAPELLA. Но полноценные наблюдения в субтерагерцевом диапазоне возможны только при развитии одновременно и наземных, и космических обсерваторий.
На сегодняшний день в Российской Федерации практически нет телескопов, способных выполнять наблюдения на частотах выше 100 ГГц. В свою очередь, Астрокосмический центр Физического института им. П. Н. Лебедева РАН (АКЦ ФИАН) активно работает над созданием космической обсерватории «Миллиметрон» («Спектр-М»). В новой работе специалисты из АКЦ ФИАН рассмотрели несколько концепций обсерваторий субтерагерцевого диапазона. Ими стали проекты субтерагерцевой наземной антенной решетки (массив антенн малого диаметра), космического интерферометра и телескопа, расположенного на поверхности Луны.
Наземная антенная решетка
Прототип решетки для отработки ключевых технологий будет состоять из нескольких антенн (три—шесть антенн) диаметром от 3 до 5 м. В начале его планируют установить в Пущинской радиоастрономической обсерватории (ПРАО), где есть все условия для тестирования системы. После завершения испытаний ученые предполагают создать на базе прототипа антенны и несущей платформы полноценную обсерваторию субтерагерцевого диапазона. Она будет состоять из шести полноповоротных антенн диаметром до 8 м и качеством поверхности антенн около 40 микрон. Причем начать наблюдения можно будет уже при наличии трех антенн. Угловое разрешение получившегося инструмента достигнет 0,59 угловой секунды. Разместить антенную решетку планируют либо на локальном плато на горе Маяк в Дагестане (высота над уровнем моря 2352 м), либо на пике Хулугайша в Саянах (высота над уровнем моря 3015 м).
Обсерватория на Луне
С научной точки зрения крайне перспективными будут лунные телескопы, работающие в недоступных на поверхности Земли диапазонах электромагнитного спектра. Это низкочастотный (частота ниже 10 МГц, метровые волны) и высокочастотный (больше 100 ГГц, включая дальний инфракрасный диапазон). В первом случае наблюдениям с Земли мешают ограничения ионосферы и техногенный шум радиоэфира, во втором ограничения связаны с поглощением и флуктуациями излучения при прохождении атмосферы. На поверхности Луны эти проблемы отсутствуют. Но научные задачи для высокочастотного диапазона более приоритетные. АКЦ ФИАН проработал сразу несколько вариантов радиоинтерферометрической антенной решетки в зависимости от места размещения обсерватории на Луне.
Первый вариант предполагает размещение всего комплекса антенных решеток внутри темного кратера, в который не проникают лучи Солнца. Это снизило бы нагрузку на криосистемы научных приборов, но усложнило бы их энергообеспечение. Решением этой проблемы может стать специальный служебный модуль, который совершит посадку в зону, освещаемую Солнцем. Помимо генерации и передачи электроэнергии для антенных модулей в кратере он мог бы осуществлять обмен научными и служебными данными между обсерваторией и Землей (возможно, через окололунный орбитальный ретранслятор).
Другой вариант — это строительство наблюдательного комплекса в приполярной зоне на освещаемом Солнцем участке. Это снимает проблему энергообеспечения антенн и делает их более автономными. Причем отдельные элементы антенной решетки могут быть как стационарными, так и передвижными конструкциями. Перемещающиеся по поверхности антенны могли бы занять на поверхности Луны оптимальную для наблюдений локацию. Правда, это может создавать технические трудности в виду больших габаритов аппаратов.
Лунная антенная решетка, работая совместно с наземной сетью телескопов, позволит «рассмотреть» тени черных дыр с разрешением до 30 раз лучше, чем это сделал Телескоп горизонта событий. Это приведет к прорыву в изучении физики сверхмассивных черных дыр. Также лунная обсерватория будет исследовать раннюю Вселенную через наблюдения спектральных искажений реликтового излучения и изучать некоторые проблемы звездообразования.
Космический интерферометр
Третье перспективное направление, которое может использовать опыт создания универсальной антенной решетки,— это космический интерферометр (интерферометр «космос—космос»). Астрокосмический центр Физического института им. П. Н. Лебедева Российской академии наук накопил огромный опыт в процессе работы над проектами обсерваторий «Радиоастрон» и «Миллиметрон». Поэтому новый космический интерферометр может иметь проекции баз до 1,5 млн км и более. Это позволит достичь предельно высокого углового разрешения, необходимого для исследования сверхкомпактных астрономических объектов, например черных дыр, внегалактических мазерных источников и нейтронных звезд. Космический интерферометр в отличие от антенной решетки, расположенной на поверхности Луны, сможет вести наблюдения близких окрестностей сверхмассивных черных дыр в динамике. Это позволит наблюдать движение вещества в экстремальных условиях в непосредственной близости от горизонта событий. Подобные наблюдения возможны в так называемом режиме мгновенного снимка (snapshot), когда за счет удачной конфигурации орбит космических телескопов удается восстановить относительно качественное изображение источника за кратчайшее время. Наиболее подходящие и ближайшие объекты для подобных исследований — это Sgr A* или М87.