Такая машина идеальна для решения криптографических задач, она способна достаточно быстро взламывать военные серверы и компьютерные сети, вскрывать защищенные каналы связи, лишая армию управления, – не говоря уже о проникновении в банковские сети и прочие гражданские компьютерные системы. Обладание соответствующими технологиями – вопрос выживания государства.
СМИ о нас
20.01.25 | 20.01.2025 Новости Челнов. В России предложен новый недорогой способ производства радиофармпрепаратов |
Исследователи Томского государственного университета (ТГУ) совместно с коллегами из Физического института имени П. Н. Лебедева (ФИАН) разработали универсальную технологию получения изотопов, которая может применяться непосредственно в медицинских центрах. Это снижает затраты на транспортировку и удешевляет протонную онкотерапию, сообщили в пресс-службе Минобрнауки РФ.
Ключевым элементом разработки стал протонный ускоритель «Прометеус», созданный для лечения онкологических заболеваний. Учёные предложили использовать его для производства изотопа молибдена-99, который необходим для получения технеция-99m – основного радионуклида в диагностике ядерной медицины.
В основе процесса лежит генерирование нейтронов при прохождении пучка протонов через металлическую мишень и последующее облучение пластинки из природного молибдена. Технология позволяет также производить другие изотопы, такие как лютеций-177 и рений-188, которые активно применяются в лечении рака.
По словам Владимира Иванченко, ведущего научного сотрудника ТГУ, компьютерное моделирование подтвердило высокую эффективность метода. Максимальная производительность достигается при толщине мишени в 1 мм, что позволяет снизить расход материалов.
Главное преимущество новой технологии – её универсальность. Производство изотопов можно совмещать с терапевтическими функциями ускорителя, что делает возможным их получение непосредственно в медцентрах, снижая логистические расходы и повышая доступность высокотехнологичной медицины.
О проекте
Работа выполнена в рамках проекта, финансируемого мегагрантом правительства России. В рамках пятилетнего исследования учёные решают задачи по моделированию процессов для экспериментов на адронном коллайдере NICA в Дубне. Кроме того, проект способствует развитию прикладных направлений, включая ядерную медицину. Исследование продлится до 2028 года, его бюджет составляет 500 млн рублей.
20.01.25 | 20.01.2025 Планета сегодня. Изотопы на месте: российские ученые удешевляют ядерную медицину |
Исследователи Томского государственного университета (ТГУ) совместно с учеными Физического института имени П. Н. Лебедева (ФИАН) разработали новую технологию производства изотопов для ядерной медицины. Уникальная методика позволяет синтезировать изотопы прямо в медицинских центрах, что значительно снижает расходы на их транспортировку и делает протонную терапию более доступной. Об этом пишет ТАСС.
Ключевую роль в технологии играет протонный ускоритель "Прометеус", расположенный на базе ФТЦ ФИАН в Протвино. Основное предназначение ускорителя - лечение онкологических заболеваний с использованием протонной терапии. Ученые предложили применять его также для производства молибдена-99 — изотопа, необходимого для получения технеция-99m, широко используемого в диагностике.
Технология основана на генерации нейтронов при взаимодействии протонов с металлической мишенью, после чего нейтроны облучают пластину из природного молибдена. Такой подход можно адаптировать для получения других медицинских изотопов, таких как лютеций-177 и рений-188, которые используются в онкотерапии.
Компьютерное моделирование, проведенное учеными, подтвердило высокую эффективность процесса. Например, установлено, что оптимальная толщина мишени в 1 мм позволяет достичь высокой производительности при минимальном расходе материалов. Это делает технологию универсальной и экономически выгодной.
Главное преимущество разработки в том, что она позволяет совмещать производство изотопов с терапевтической функцией ускорителя. Теперь изотопы можно получать непосредственно в лечебно-диагностических центрах, сокращая логистические издержки и расширяя доступ к передовым методам лечения.
20.01.25 | 20.01.2025 ТАСС. В России предложили новый недорогой способ производства радиофармпрепаратов |
ТОМСК, 20 января. /ТАСС/. Технологию получения изотопов для ядерной медицины смоделировали исследователи Томского государственного университета (ТГУ) и Физического института имени П. Н. Лебедева (ФИАН). Новая технология универсальна и позволяет получать изотопы непосредственно в центрах ядерной медицины, что снижает логистические издержки и позволяет удешевить протонную онкотерапию, сообщили ТАСС в пресс-службе Минобрнауки РФ.
"Ключевым элементом технологии выступает действующий на базе ФТЦ ФИАН им. П. Н. Лебедева РАН (Протвино) протонный ускоритель "Прометеус", основное назначение которого - протонная терапия онкологических заболеваний. Ученые предложили использовать ускоритель для производства изотопов молибдена-99, который в свою очередь служит для получения технеция-99m - основного диагностического радионуклида современной ядерной медицины", - говорится в сообщении.
В министерстве уточнили, что в основе предлагаемой технологии производства изотопов молибдена-99 - генерация нейтронов при прохождении протонного пучка через металлическую мишень и последующее облучение нейтронами пластинки из природного молибдена. Технология может быть использована не только для молибдена-99, но и для получения других важных изотопов, например, лютеция-177 и рения-188, которые активно используются в лечении онкологических заболеваний.
"Мы провели компьютерное моделирование этого процесса и показали, что при заданных характеристиках ускорителя "Прометеус" эффективность производства изотопов может быть очень высокой, особенно в отношении изотопа молибдена. Проведенное моделирование позволило определить ключевые параметры системы. Например, было установлено, что максимальная эффективность достигается при толщине мишени в 1 мм, это позволяет достигать высокой производительности при минимальном расходе материала", - приводятся в сообщении слова ведущего научного сотрудника лаборатории анализа данных физики высоких энергий ТГУ Владимира Иванченко.
Главное преимущество новой технологии - в ее универсальности: установка позволяет совмещать производство изотопов с основными функциями ускорителя, в частности, терапевтическим использованием. Это делает возможным получение необходимых изотопов непосредственно на площадках лечебно-диагностических центров ядерной медицины, снижая логистические издержки и делая высокотехнологичную медицину доступнее.
О проекте
Моделирование выполнено в рамках масштабного проекта, поддержанного мегагрантом правительства РФ. В рамках пятилетнего проекта междисциплинарная группа ученых решает несколько задач. Основная заключается в моделировании детекторов и физических процессов для экспериментов на российском адронном суперколлайдере NICA, построенном в Дубне. Наряду с этим проект поможет развивать несколько прикладных направлений, одним из которых является ядерная медицина. Проект продлится до конца 2028 года. Сумма финансирования составляет 500 млн рублей.
16.01.25 | 16.01.2025 Телеграм-канал РНФ. Ученые доказали теорию акустической турбулентности |
Ученые из Сколтеха, Института электрофизики УрО РАН и ФИАН впервые описали звуковую турбулентность, используя метод параллельных вычислений на видеокартах.
Это позволило проводить сложные вычисления на обычном персональном компьютере вместо использования дорогостоящего суперкомпьютера.
Турбулентность — это сложное хаотическое поведение жидкостей, газов или нелинейных волн в различных физических системах. Она возникает, например, на поверхности океана из-за ветра и течений, в оптике при рассеивании лазерного излучения через линзы или в звуковых волнах, распространяющихся в средах вроде жидкого сверхтекучего гелия.
Ход исследования
Разработано численное решение уравнения для описания звуковых волн в турбулентной среде.
Для расчетов использовались 4 видеокарты на одном ПК, которые распределяли задачи параллельно.
Проверена модель на примере звуковых волн в жидком сверхтекучем гелии при температуре около -270°C.
Основные результаты
Подтверждена теория волновой турбулентности, впервые предложенная советскими учеными в 1970-х.
Доказана возможность точного численного решения сложных уравнений на персональных компьютерах.
Результаты открывают новые перспективы для применения теории турбулентности в прогнозах погоды, астрофизике и ядерной энергетике.
Применение теории волновой турбулентности поможет точнее моделировать климатические изменения, процессы в атмосферах звезд и даже поведение океанических волн.
В дальнейшем ученые планируют изучать другие волновые системы, включая крупные океанические волны и магнитогидродинамические явления.
Результаты исследования опубликованы в журнале Physical Review Letters
Подробнее — в статье Коммерсантъ
16.01.25 | 14.01.2025 ВКонтакте МСИ. Вышла в свет книга «К истории ФИАН. Часть I» |
Всем привет и с прошедшими вас!
В декабре вышла в свет первая часть книги-альбома «К истории ФИАН», которую мы подготовили к юбилею Института.
Цель данного уникального издания – дать краткое представление об истории Физического института им. П.Н. Лебедева. Отметим, часть помещенных в альбом материалов публикуется впервые.
В электронном виде книга уже доступна у нас на сайте
16.01.25 | 14.01.2025 Телеграм-канал МСИ. Вышла в свет книга «К истории ФИАН. Часть I» |
Всем привет и с прошедшими вас!
В декабре вышла в свет первая часть книги-альбома «К истории ФИАН», которую мы подготовили к юбилею Института.
Цель данного уникального издания – дать краткое представление об истории Физического института им. П.Н. Лебедева. Отметим, часть помещенных в альбом материалов публикуется впервые.
16.01.25 | 14.01.2025 РНФ. Ученые доказали теорию акустической турбулентности и просчитали распространение звуковых волн |
Исследователи впервые использовали метод параллельных вычислений на видеокартах, чтобы описать звуковую турбулентность. Такое моделирование может проводиться на обычном персональном компьютере, тогда как раньше для подобной процедуры требовался суперкомпьютер — огромный и дорогой кластер из вычислительных машин. Открытие поможет уточнить модели прогнозов погоды и позволит использовать теорию турбулентности в самых разных областях физики, например, в астрофизике для просчитывания траекторий и скорости распространения акустических колебаний во Вселенной. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Physical Review Letters.
Источник: Пресс-служба РНФ
Турбулентность — сложное хаотическое поведение жидкостей, газов или нелинейных волн в различных физических системах. Например, турбулентность может возникать на поверхности океана из-за ветра и дрейфовых течений. Известны случаи турбулентности лазерного излучения в оптике при рассеивании света через линзы. Также существует турбулентность звуковых волн: они распространяются хаотично в определенных средах, например, в жидком сверхтекучем гелии.
В семидесятых годах XX века советские ученые предположили, что при высоких амплитудах (отклонении от положения равновесия) звуковых волн возникает звуковая турбулентность. Сама по себе теория волновой турбулентности применима для множества других волновых систем, например, для магнитогидродинамических волн в ионосферах звезд и планет-гигантов и даже, возможно, для гравитационных волн в ранней Вселенной. При этом предсказать, как распространяются нелинейные (то есть движущиеся хаотично) звуковые и другие волны, ранее из-за большой вычислительной сложности было практически невозможно.
Ученые из Сколковского института науки и технологий (Сколково), Института электрофизики Уральского отделения РАН (Екатеринбург) и Физического института имени П.Н. Лебедева РАН (Москва) впервые нашли численное решение для уравнения, описывающего распространение звуковых волн в турбулентности, и тем самым смогли доказать теорию советских ученых.
Для расчетов авторы использовали графические процессоры (видеокарты). Исследователи нашли решения для нескольких частей уравнения, математически описывающего распространение звуковых волн, параллельно на четырех разных видеокартах, установленных на одном компьютере. Получается, что вместо использования огромного и очень дорого суперкомпьютера — кластера из вычислительных машин, — который смог бы найти приблизительный ответ, ученые смогли провести расчеты на небольшом персональном компьютере и прийти к точному численному решению.
Плотность газа в режиме слабой турбулентности, когда амплитуды звуковых волн малы (слева), и в состоянии сильной турбулентности, при которой акустическая турбулентность представляет собой набор случайных ударных волн (справа). Источник: Евгений Кочурин
Авторы проверили свое решение, численно проследив распространение звуковых волн в нелинейной среде, похожей на жидкий сверхтекучий гелий, при температуре около -270°C. Этот газ был выбран потому, что в данных условиях он становится квантовой жидкостью. Такая жидкость обладает сверхтекучестью и сверхпроводимостью, благодаря чему ее можно использовать в сверхпроводниках. На сверхпроводниках сегодня работают квантовые компьютеры, поезда на магнитной подушке (в Китае и в Японии) и многие другие высокотехнологичные устройства. Кроме того, сверхтекучий гелий используется в ядерной энергетике.
Подтверждение теории турбулентности на примере звуковых волн — важное открытие, которое можно сравнить с таблицей Менделеева. Роль самой таблицы играет теория волновой турбулентности, а каждый тип турбулентности (звуковая, гравитационная, магнитногидродинамическая) соответствует элементу системы, свойства которого полностью описываются положением в таблице и очень точно предсказываются с помощью теории. Теорию турбулентности можно применить для любой волновой системы: например, численное решение уравнений для морских волн уже включено в глобальные метеорологические модели прогнозирования погоды и изменений климата. Поэтому с учетом теории турбулентности прогнозы погоды станут точнее.
«Разгадка природы турбулентности — это одна из важнейших нерешенных задач современной физики. Так, например, только с развитием теории турбулентности стало возможным с хорошей точностью предсказывать погоду. Мы планируем исследовать другие волновые системы, например, океанические волны большой амплитуды. Удивительно, но у звуковых волн и волн на поверхности океана много общего. Например, при больших амплитудах морские волны могут опрокидываться. Этот процесс во многом похож на формирование акустической ударной волны. При опрокидывании волн возникают большие плотности энергии или давления. Сейчас существует гипотеза, что подобные коллапсы различной природы приводят к появлению турбулентности», — рассказывает участник проекта, поддержанного грантом РНФ, Евгений Кочурин, кандидат физических наук, старший научный сотрудник лаборатории нелинейной динамики Института электрофизики Уральского отделения РАН и научный сотрудник Лаборатории интегрируемых систем и турбулентности Центра перспективных исследований имени И. М. Кричевера Сколтеха.
16.01.25 | 13.01.2025 Коммерсант. Как звучат вихри |
Российские ученые доказали теорию акустической турбулентности
Исследователи впервые использовали метод параллельных вычислений на видеокартах, чтобы описать звуковую турбулентность. Такое моделирование может проводиться на обычном персональном компьютере, тогда как раньше для подобной процедуры требовался суперкомпьютер — огромный и дорогой кластер из вычислительных машин. Открытие поможет уточнить модели прогнозов погоды и позволит использовать теорию турбулентности в самых разных областях физики — например, в астрофизике для просчитывания траекторий и скорости распространения акустических колебаний во Вселенной. Исследование поддержано грантом Российского научного фонда.
Фото: Getty Images
Турбулентность — сложное хаотическое поведение жидкостей, газов или нелинейных волн в различных физических системах. Например, турбулентность может возникать на поверхности океана из-за ветра и дрейфовых течений. Известны случаи турбулентности лазерного излучения в оптике при рассеивании света через линзы. Также существует турбулентность звуковых волн: они распространяются хаотично в определенных средах — например, в жидком сверхтекучем гелии.
В 70-х годах XX века советские ученые предположили, что при высоких амплитудах (отклонении от положения равновесия) звуковых волн возникает звуковая турбулентность. Сама по себе теория волновой турбулентности применима для множества других волновых систем — например, для магнитогидродинамических волн в ионосферах звезд и планет-гигантов и даже, возможно, для гравитационных волн в ранней Вселенной. При этом предсказать, как распространяются нелинейные (то есть движущиеся хаотично) звуковые и другие волны, ранее из-за большой вычислительной сложности было практически невозможно.
Ученые из Сколковского института науки и технологий (Сколково), Института электрофизики Уральского отделения РАН (Екатеринбург) и Физического института им. П. Н. Лебедева РАН (Москва) впервые нашли численное решение для уравнения, описывающего распространение звуковых волн в турбулентности, и тем самым смогли доказать теорию советских ученых.
Для расчетов авторы использовали графические процессоры (видеокарты). Исследователи нашли решения для нескольких частей уравнения, математически описывающего распространение звуковых волн, параллельно на четырех разных видеокартах, установленных на одном компьютере. Получается, что вместо использования огромного и очень дорогого суперкомпьютера — кластера из вычислительных машин,— который смог бы найти приблизительный ответ, ученые смогли провести расчеты на небольшом персональном компьютере и прийти к точному численному решению.
Авторы проверили свое решение, численно проследив распространение звуковых волн в нелинейной среде, похожей на жидкий сверхтекучий гелий, при температуре около –270°C. Этот газ был выбран потому, что в данных условиях он становится квантовой жидкостью. Такая жидкость обладает сверхтекучестью и сверхпроводимостью, благодаря чему ее можно использовать в сверхпроводниках. На сверхпроводниках сегодня работают квантовые компьютеры, поезда на магнитной подушке (в Китае и в Японии) и многие другие высокотехнологичные устройства. Кроме того, сверхтекучий гелий используется в ядерной энергетике.
Плотность газа в режиме слабой турбулентности, когда амплитуды звуковых волн малы (слева), и в состоянии сильной турбулентности, при которой акустическая турбулентность представляет собой набор случайных ударных волн (справа)
Подтверждение теории турбулентности на примере звуковых волн — важное открытие, которое можно сравнить с таблицей Менделеева. Роль самой таблицы играет теория волновой турбулентности, а каждый тип турбулентности (звуковая, гравитационная, магнитогидродинамическая) соответствует элементу системы, свойства которого полностью описываются положением в таблице и очень точно предсказываются с помощью теории. Теорию турбулентности можно применить для любой волновой системы: например, численное решение уравнений для морских волн уже включено в глобальные метеорологические модели прогнозирования погоды и изменений климата. Поэтому с учетом теории турбулентности прогнозы погоды станут точнее.
«Разгадка природы турбулентности — это одна из важнейших нерешенных задач современной физики. Так, например, только с развитием теории турбулентности стало возможным с хорошей точностью предсказывать погоду. Мы планируем исследовать другие волновые системы — например, океанические волны большой амплитуды. Удивительно, но у звуковых волн и волн на поверхности океана много общего. Например, при больших амплитудах морские волны могут опрокидываться. Этот процесс во многом похож на формирование акустической ударной волны. При опрокидывании волн возникают большие плотности энергии или давления. Сейчас существует гипотеза, что подобные коллапсы различной природы приводят к появлению турбулентности»,— рассказывает участник проекта, поддержанного грантом РНФ, Евгений Кочурин, кандидат физических наук, старший научный сотрудник лаборатории нелинейной динамики Института электрофизики Уральского отделения РАН и научный сотрудник Лаборатории интегрируемых систем и турбулентности Центра перспективных исследований имени И. М. Кричевера Сколтеха.
Подготовлено при поддержке Российского научного фонда
Использованы материалы статьи.
21.01.24 | 18.01.2024 TechInsider. «Атомная бомба XXI века»: ученые объясняют технологию создания квантового компьютера |
Но квантовые компьютеры нужны не только для военных целей – они необходимы для решения задач в области квантовой химии, оптимизации финансового моделирования, обучения искусственного интеллекта. С помощью квантовых алгоритмов можно рассчитывать параметры сложных молекул, лекарств, новейших материалов – например, для авиастроения.
Если продолжить сравнение квантовой машины с атомной бомбой, то следует вспомнить, что при общем названии вариантов таких бомб было множество и они сильно различались между собой. Например, бомба, сброшенная на Хиросиму, была сделана по пушечной схеме из высокообогащенного урана, а сброшенная на Нагасаки – по имплозивной схеме с обжатием плутония сферической сходящейся ударной волной. Точно так же сейчас – при едином принципе работы – существует несколько концепций построения квантового компьютера. Главные технологии, на которых сосредоточены все усилия, – это ионные ловушки, нейтральные атомы, фотоны и сверхпроводящие кубиты. Никто точно не знает, какая из технологий в итоге «выстрелит», поэтому развивать приходится все. Пока мы, как и с отечественным атомным проектом, по некоторым направлениям отстаем от стран – лидеров квантовой гонки на три-пять лет, но уже постепенно нагоняем конкурентов.
Ближе всех к цели подошла группа Николая Колачевского из совместной лаборатории Физического института им. П. Н. Лебедева (ФИАН) и Российского квантового центра (РКЦ), занимающаяся квантовыми компьютерами на ионах. Мы поговорили о работе над этим проектом с заместителем руководителя научной группы Ильей Семериковым.
Выпускнику МФТИ Илье Семерикову всего 31 год, но он возглавляет одно из важнейших направлений квантовой физики и входит в первую десятку ученых, которые двигали отечественную науку в этом году.
В традиционных компьютерах единицей информации является бит, а в квантовых – кубит. В отличие от традиционного бита кубит в квантовом мире не обязан быть в одном состоянии: он может быть в любой комбинации из них – в квантовой механике это называется суперпозицией. Четыре классических бинарных бита имеют 24 конфигураций в одном из 16 состояний. А четыре кубита могут быть одновременно во всех 16 состояниях. Чтобы описать состояние системы из четырех кубит, нужно 16 чисел. И это количество возрастает экспоненциально с каждым новым кубитом. Так, для описания 20 кубитов уже понадобится хранить около миллиона значений одновременно, а для 300 потребуется больше чисел, чем атомов во Вселенной.
Еще одно странное свойство кубитов – запутанность: каждый запутанный кубит мгновенно реагирует на изменение состояния другого кубита, как бы далеко друг от друга они ни находились. Измерив один запутанный кубит, мы можем узнать состояние другого, связанного с ним. Чтобы объяснить это явление людям, незнакомым с квантовой физикой, обычно используют сравнение с носками. Представьте, что у вас есть пара квантово связанных носков, разнесенная по разным континентам. Тогда если на одном континенте кто-то наденет носок на правую ногу, то на другом континенте второй носок мгновенно окажется на левой.

Квантовый компьютер Ильи Семерикова расположен в подвальном помещении ФИАН на Ленинском проспекте и напоминает нагромождение лазеров, линз и камер – в общем, классическую лабораторную установку из мира квантовой оптики. На черном фоне монитора выстроились в одну линию 10 светящихся белых точек – это и есть связанные ионы. Прогресс в области квантовых технологий ошеломляющий. Когда я договаривался с Ильей о встрече, у него был 16-кубитный квантовый компьютер, а когда доехал – уже 20-кубитный.

Когда речь заходит о квантовых вычислениях, люди прежде всего смотрят на число кубит, потому что это понятная метрика. Тут работает обратная связь: ученые понимают, что успешность их работы оценивают по количеству кубит, и начинают это количество увеличивать: в США так делают, чтобы понравиться инвесторам, в России – правительству, в Китае – партии. Но на самом деле важна комбинация параметров. Нельзя сказать, что число кубит – какая-то бессмыслица, нет, это действительно одна из главных характеристик. Но не менее значимо качество операций.
Квантовые вентили делятся на два вида: одно- и двухкубитные. Однокубитные операции «дешевые»: у них маленькая ошибка. Ошибки в вычислениях независимые, поэтому, если последовательно проводить несколько операций, они складываются. И можно посмотреть, сколько сотен операций удастся провести, прежде чем ошибка станет больше 50%.
Второй существенный параметр – достоверность двухкубитных операций на массиве.
Группа Колачевского работает с кудитными операциями. Кудиты – особые квантовые системы, которые могут одновременно находиться в более чем двух состояниях и выполнять, в частности, двухкубитные операции. По сути, кудит является усовершенствованной версией кубита. В чем их преимущество?
Кудитных универсальных процессоров в мире всего два: один построен в Инсбурге, второй – у Семерикова.
Квантовыми компьютерами Илья занимается всего четыре года, до этого он шесть лет работал с квантовыми сенсорами, а начинал свой путь в науку вообще с теоретической астрофизики, сидя этажом выше в том же институте.
Первые ионы в ловушке российские физики получили в конце 2020 года, за три года дотянувшись до уровня лучших научных групп по этому направлению. В качестве рабочего тела команда Семерикова использует ионы 171-го изотопа иттербия: у них одна из самых интересных квантовых структур уровней, которые охлаждаются при помощи лазера до минимально возможной температуры – порядка милликельвина. Для сравнения: самая низкая температура во Вселенной – 2,7 К, то есть ионы в квантовом компьютере в тысячу раз холоднее.
Удерживаются охлажденные ионы в сверхнизком вакууме электромагнитными полями. «У нас один из лучших вакуумов во Вселенной», – смеется Илья. На экране компьютера светятся 10 ярких точек-ионов. «Это вчерашние, – говорит физик. – А так они у нас живут неделю. Потом один из них "цепляет" водород, и вместо чистого иттербия получается его гидрид, который мы разрушаем при помощи лазера. Иногда не получается. Тогда мы ловим новые ионы».
Ионы расположены в вакуумной камере на расстоянии порядка 5 микрон друг от друга. Цепочкаиз 10 ионов – уже 50 микрон, вполне макроскопическая величина. «Зарядка» компьютера ионами происходит при помощи небольшой трубочки, в которую забит металлический иттербий. Она разогревается до 250–300 °С, иттербий начинает испаряться, и в сторону ловушки летит нейтральный поток атомов.
Внутри ловушки они подсвечиваются лазером и происходит изотопно-селективный переход на промежуточный уровень. Вторым фотоном отрывается электрон, причем только от 171-го изотопа иттербия, который и захватывается ловушкой. Примерно через 10 секунд на экране появляется светящаяся точка. 100 секунд – и компьютер заряжен ионами. Этого хватает на неделю экспериментов. По словам Ильи Семерикова, если уйти в криогенику, то время жизни ионов станет практически неограниченным: они в ловушке могут жить годами.

Первой трудной задачей было как раз создание ловушки. Ионы в ней удерживаются электромагнитным полем, и его важная характеристика – секулярная частота, частота колебаний ионов. В первой ловушке она составляла 1,5 МГц, в новой достигает 4,4 МГц. К тому же поле должно быть с низкими шумами, оно характеризуется темпами нагрева по числу фононов (квазичастица, квант энергии согласованного колебательного движения атомов) в секунду. Вот, например, в старом устройстве число темпа нагрева достигало 10 тыс. фононов в секунду, а в новом – всего 10, как у лучших ловушек в мире.

Уже музейный экземпляр – ионная ловушка, в которой был получен первый ионный кристалл в России еще в 2016 году. ПАО "Туполев"
Вторая сложность – лазер, при помощи которого производятся одно- и двухкубитные операции. Берут обычный коммерческий лазер с шириной линии порядка нескольких мегагерц и при помощи специальных техник уменьшают ее до 1 Гц. Для этого команде Семерикова пришлось создать ультрастабильный оптический резонатор, который помещается в вакуумную камеру с температурой стабильности 10–6 градусов.
Еще одна задача – автоматическая калибровка. В российской установке сотни параметров, и все нужно контролировать. Несколько десятков уже удалось автоматизировать, остальные ждут своей очереди. После этого Илья хочет перейти от оптического набора кудитов к радиочастотному, что увеличит время когерентности и позволит делать больше операций. Например, у квантовых компьютеров на сверхпроводниках время когерентности составляет порядка 0,5 мс, а у компьютеров на ионах – 20 мс, что в 40 раз лучше. На радиочастотных кубитах можно будет довести время до часа. После этого Семериков собирается заняться повышением уровня достоверности операций.
«А что дальше?» – спрашиваю я. «Увеличивать количество кубит. – У Ильи на все готов ответ. – Над этой задачеймы тоже работаем: конструируем планарные ловушки».
Квантовый компьютер – штука недешевая. Мы ходим с Ильей вокруг установки, и я интересуюсь стоимостью компонентов. Например, за оптический стол, на котором все смонтировано, пришлось заплатить около 1,3 млн руб. Он должен быть очень стабильным, «развязан» от пола, внутри – сложная сотовая структура. И это далеко не самая дорогая часть. Измеритель длин волн, который для всего мира выпускает компания из новосибирского Академгородка, продается за 10 млн. Оптический резонатор, который ребята собирают сами, обычно стоит под 20 млн. За лазеры для считывания состояний атомов тоже просят 20 млн; раньше их покупали в Германии, а теперь в Китае.
То есть оборудование всего для одной установки обходится минимум в 300 млн руб., а таких установок нужно несколько. Отдельная гордость Ильи – локализация: весь его квантовый компьютер можно собрать из отечественных и китайских комплектующих, так что санкции нашим физикам нипочем.

10.01.24 | 10.01.2024 Академгородок. Нейросети, химеры, квантовый эффект Холла и Ватикан |
На тридцатом новогоднем семинаре ученые Института физики полупроводников им. А.В. Ржанова СО РАН, Института цитологии и генетики СО РАН, Института ядерной физики им. Г.И. Будкера СО РАН, Института химической кинетики и горения им. В.В. Воеводского СО РАН рассказали о ярких достижениях мировой науки в ушедшем году.
Несколько докладчиков выбрали темой сообщений Нобелевские премии, кроме того слушатели узнали о способностях нейросетей, достижениях медиков и биологов в области трансплантации человеческих органов, химеризме, взрывных, в прямом смысле, полупроводниковых соединениях и прочих успехах научного мира.
Деятельность ИФП СО РАН в 2023 году охарактеризовал директор института академик РАН Александр Васильевич Латышев. Он отметил, что институт провел несколько крупных конференций, школ молодых ученых, выездное заседание Объединенного ученого совета СО РАН по нанотехнологиям, совещание «Синергия промышленности и науки» при участии мэрии Новосибирска, а на Общем собрании СО РАН были представлены результаты крупного научного проекта «Квантовые структуры для посткремниевой электроники», выполняемого несколькими НИИ и вузами под руководством ИФП СО РАН:
«В числе важнейших достижений присуждение премии им. А.Ф. Иоффе главному научному сотруднику ИФП СО РАН доктору наук Матвею Вульфовичу Энтину. Кроме того, деятельность ученых Института была отмечена почётными знаками и благодарностями Минобрнауки России и Российской академии наук».
Тысячекратный рост производительности суперкомпьютеров каждые 10 лет
Академик Александр Леонидович Асеев поделился примечательными событиями в области микроэлектроники, приведя ключевые тезисы из докладов президента РАН академика Г.Я. Красникова на форуме «Микроэлектроника» и общем собрании РАН: «Прогресс в области освоения нанометровых размеров транзисторов вместе с переходом к новым конструкциям транзисторов, новым технологиям их расположения, применении новых материалов и совершенствовании нанолитографических машин приведет к преодолению ограничений, накладываемых законом Мура. Произойдет многократное увеличение счетной мощности полупроводниковых микросхем. Ожидается тысячекратный рост производительности суперкомпьютеров каждые 10 лет до зеттафлопс в 2035 г».
Цитируя президента РАН, Александр Асеев добавил, что создание квантовых фотонных вычислителей не заменит классическую электронику и суперкомпьютеры, но сильно расширит их возможности. Во-первых, по производительности и защищенности вычислений при применении квантовых технологий, во-вторых в снижении энергетических затрат при применении фотонных технологий.
В новый год без Новой физики?
Заведующий лабораторией ИЯФ СО РАН академик РАН Александр Евгеньевич Бондарь рассказал о работе специалистов Института ядерной физики, ставящей под вопрос существование Новой физики, то есть частиц и явлений, не описываемых Стандартной моделью: «Измерение, сделанное в ИЯФ СО РАН и опубликованное в этом году, кардинально переворачивает всё представление о нашем понимании и знании вакуума и частиц, возможно, дающих вклад в аномальный магнитный момент мюона. Экспериментальное измерение величины аномального магнитного момента мюона блестяще согласуется с теоретическим расчетом, это говорит о том, что Новой физики мы пока похоже не видим».
Химеры среди нас, а не только в греческой мифологии: муравьи и люди
История, рассказанная заведующим лабораторией генетики развития ИЦиГ СО РАН кандидатом биологических наук Нариманом Рашитовичем Баттулиным, касалась неожиданного фундаментального противоречия в области биологии.
«Хочу поделиться с вами сильным впечатлением этого года: оно связано с химерами и базируется на статье в Science. В ней описаны уникальные организмы — желтые сумасшедшие муравьи. Уникальность в том, что их пол определяется не так, как у остальных муравьев, пчел. У желтых сумасшедших муравьев уже на стадии существования всего двух клеток наблюдается смесь разных геномов. Клетки начинают развиваться в муравья, но отдельные “части” сделаны из разных геномов — из материнского и из отцовского.
Это фундаментальное нарушение правил, потому что все многоклеточные организмы строятся из идентичных геномов — одна клетка делится, и в каждой клетке тела одинаковые геномы. Если этого не соблюдать, то клетки начнут друг с другом конкурировать, это приводит к очень неустойчивому состоянию. А желтые сумасшедшие муравьи каким-то образом преодолели фундаментальное противоречие», — пояснил ученый.
Он подчеркнул, что у людей тоже выявлен химеризм, такой случай описан в США. Результаты генетического теста, проведенные для матери и ее нескольких детей, демонстрировали отсутствие родственной связи. Даже в случае, когда генетический материал для теста был взят незамедлительно после родов, проходивших под контролем врачей.
«Среди людей тоже встречаются химеры — иногда близнецы в утробе матери “сливаются” и получается организм, состоящий наполовину из одних клеток (с одним геномом), а наполовину – из других. В случае с матерью в США ученые выяснили, что она — химера, и в результате были даже сделаны определенные законодательные поправки.
Я хочу всем пожелать почаще встречать в следующем году такие будоражащие воображение случаи и преодолевать даже самые сложные и неразрешимые противоречия», — заключил Нариман Баттулин.
Нобелевская премия завтрашнего дня
Старший научный сотрудник лаборатории нелинейных лазерных процессов и лазерной диагностики ИФП СО РАН кандидат физико-математических наук Илья Игоревич Бетеров представил свой прогноз о том, какие исследователи могут получить Нобелевскую премию в недалекой перспективе: «Это Михаил Лукин и Владан Вулетич. Они продемонстрировали точность получения квантовых перепутанных состояний, с ультрахолодными нейтральными атомами выше 99,5% в массиве из шести атомов — выдающееся достижение, открывающее возможности для создания квантовых процессоров на основе нейтральных атомов, которые могли бы конкурировать со сверхпроводящими и ионными процессорами. Михаил Лукин — теоретик, он генерирует основные идеи, как сделать такие квантовые состояния, а команда Вулетича их воплощает экспериментально».
Среди российских ученых Илья отметил лауреата премии «Вызов», молодого сотрудника Физического института академии наук (ФИАН) Илью Семерикова: «Группа исследователей реализовала прототип квантового процессора с четырьмя кудитами или восемью кубитами на ионной платформе. Илье Семерикову 31 год, и он один из самых перспективных исследователей в этой области».
Криминалистика, краска для волос и гигантское комбинационное рассеяние света
О прикладной научной работе, имеющей важное значение для идентификации личности, рассказала младший научный сотрудник лаборатории ближнепольной оптической спектроскопии и наносенсорики Нина Николаевна Курусь.
«Один из современных трендов в криминалистике — создание базы данных волос (как окрашенных, так и нет) людей разной этнической принадлежности, разного возраста и пола. Это необходимо, чтобы быстрое сканирование волос (в течение пары минут) позволяло определить потенциального обладателя волоса.
Была сделана исследовательская работа, в которой авторы попробовали дифференцировать признаки, которые отвечают за расовую принадлежность, возраст, пол и признаки, отвечающие за окрашивание. Затем авторы определяли не будут ли вышеперечисленные признаки мешать друг другу [при диагностике]. Исследование выполнялось методом гигантского комбинационного рассеяния света (ГКРС), для этого волосы помещались в раствор, содержащий золотые наночастицы».
В результате выяснилось, что методом ГКРС можно быстро выполнить анализ волос и установить этническую и половую принадлежность человека, его возраст, наличие в волосах красящего состава, тип последнего и даже марку. Присутствие красящего состава на волосах не искажает результаты определения.
«Авторы статьи оптимистично смотрят на перспективы метода гигантского комбинационного развития света, как альтернативы методам секвенирования ДНК в криминалистике», — подытожила Нина Курусь.
Ватикан благословил квантовую механику (наконец!)
Заведующий лабораторией физики низкоразмерных электронных систем ИФП СО РАН член-корреспондент РАН Дмитрий Харитонович Квон напомнил участникам новогоднего семинара, что, по его мнению, самое выдающееся открытие второй половины двадцатого века — квантовый эффект Холла. Эффект был открыт Клаусом фон Клитцингом в 1980 г, а в 1985 году ученый получил Нобелевскую премию.
«В этом году летом, на конференции по двумерным материалам Клаус фон Клитцинг рассказал, что к нему обратился Ватикан (Папская академия наук) с просьбой рассказать о квантовом эффекте Холла. Вот такое благословение», — поделился Д.Х. Квон и процитировал стих Александра Блока, написанный в 1911 году:
…Ты все благословишь тогда,
Поняв, что жизнь — безмерно боле,
Чем quantum satis Бранда воли,
А мир — прекрасен, как всегда.
Два человека и пришелец
Доктор физико-математических наук Вадим Михайлович Ковалев, заведующий лабораторией теоретической физики ИФП СО РАН рассказал об ученых, чьими достижениями он восхищен, и о космическом пришельце.
«Мы поздравляем сотрудника нашей лаборатории Матвея Вульфовича Энтина ― лауреата премии им. А.Ф. Иоффе, которая была присуждена за цикл работ “Теория фотогальванического эффекта в средах без центра инверсии”. Это не один эффект, а большое направление, внутри которого существует множество разных механизмов и эффектов. Но неисчерпаемость фотогальванического эффекта в том, что он вышел даже за рамки полупроводниковых материалов, недавно мы показали, что он может существовать в сверхпроводниках».
Второй ученый, о котором упомянул Вадим Ковалев: Алексей Старобинцев, физик-теоретик, один из основоположников теории ранней Вселенной с де-ситтеровской (инфляционной) стадией.
«Известный факт: черные дыры излучают и испаряются, и открытие этого факта почему-то все приписывают Стивену Хокингу. На самом деле, об этом Хокингу (когда тот был в Москве) сообщил А. Старобинский, он как раз окончил университет и вместе со своим научным руководителем Я. Б. Зельдовичем убедил Хокинга, что в соответствии с принципом неопределённости квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы».
Космический пришелец 2023 года по версии Вадима Ковалева ― субатомная частица «Аматэрасу» с огромной энергией: «244 квинтиллиона (десять в восемнадцатой степени) электрон-вольт: в тридцать миллионов раз большая энергия у аматэрасу, чем у частиц на Большом адронном коллайдере. Аматэрасу обнаружили с помощью телескопа “Array” участники международного проекта, включающего группы исследовательских и образовательных учреждений Японии, США, России, Южной Кореи и Бельгии», ― добавил исследователь.
Взрывоопасные полупроводники
О новых полупроводниковых материалах 2023 года слушатели узнали от заведующего лабораторией физических основ материаловедения кремния ИФП СО РАН доктора физико-математических наук Владимира Павловича Попова. Один из них ― нитрид углерода, с уникальными свойствами, теоретики предсказывали его твердость даже выше, чем у алмаза. Но вырастить его не так легко. «Большая команда европейских исследователей (где много бывших россиян) все же вырастили нитрид углерода, получив сразу четыре его фазы, включая тетрагональную и гексагональную. Для этого использовали обычные алмазные наковальни, в которых с помощью нагрева лазером создавалась температура свыше двухсот градусов, а давление достигало от 130 до 80 гигапаскалей. Когда давление и температуру снижали, полученные соединения оставались стабильными при обычных условиях».
Выяснилось, что выращенный таким образом нитрид углерода действительно близок по твердости к алмазу, и кроме того: «Нитрид углерода относится к классу энергоэффективных материалов, он превосходит тринитротолуол и гексаген, поэтому с ним надо работать с очень большой осторожностью. Не ударяйте молотком по новым полупроводниковым материалам!», ― предостерег В. Попов.
Органы свиньи ― для пересадки человеку
Татьяна Александровна Шнайдер, научный сотрудник ИЦиГ СО РАН, подводя итоги года, рассказала о ксенотрансплантации: межвидовой пересадке органов, тканей и клеток: «Пересадка органов от животного к человеку никогда не заканчивались успехом, наша иммунная система не воспринимает чужой орган. Так происходит потому что на поверхности всех наших клеток ― большое количество разных молекул, часть из них отвечают за рекогносцировку, в результате иммунная система распознает: свой или чужой. Одна из ключевых молекул: альфа-гал (α-Gal), она есть у всех млекопитающих, кроме человека. Считается, что именно альфа-гал вызывает сильнейшее иммунное отторжение».
Ученые давно пытались обойти эту проблему, и реализовали две концепции. Первая состоит в том, что в теле животного выращивается орган, полностью состоящий из клеток человека, чтобы в органе не было молекул альфа-гал и он стал безопасным для пациента.
“Филигранная работа: ученые научились выращивать в эмбрионах свиньи почки, состоящие из клеток человека», ― пояснила Т. Шнайдер.
Второй способ ― использовать генетически модифицированных животных.
«Можно модифицировать геном свиньи, чтобы она стала безопасна для пересадки органов. С помощью специальных молекулярных методов удалить ген, отвечающий за синтез альфа-гал и создать GalSafe свиней. Такую вещь сделали многие научные группы, но одна — “Revivicor” оказалась на шаг впереди и внесла еще десять модификаций, обеспечив максимальную безопасность свиней для человека», ― продолжила историю исследовательница.
Операция по пересадке органа от свиньи к человеку действительно была проведена ― для американского пациента, находящегося в терминальной стадии заболевания.
«Ему предложили так называемую терапию милосердия, по сути эксперимент, на который пациент и его семья дали согласие, и было получено разрешение от FDA. Чтобы столь быстро получить разрешение от FDA, исследователи ранее потратили несколько десятилетий. Свиньи GalSafe компании Revivicor были зарегистрированы, в первую очередь, как продукт питания для людей с аллергией на альфа-гал, после многолетних безуспешных попыток получить разрешение от FDA на терапевтический препарат. И уже к этому разрешению (на продукт питания) было сделано дополнение FDA о том, что можно использовать свиней GalSafe, как источник потенциального терапевтического применения. О том, что людей с аллергией на альфа-гал очень много и о причинах аллергии, ученые узнали из подкаста о науке “Radiolab”.
Пациент после операции прожил полтора месяца ― не так много, но для умирающего человека ― бесценная возможность провести время с семьей и близкими, напоследок сыграть в карты с любимой женой», ― завершила рассказ Татьяна Шнайдер.
Chat GPT
Главный научный сотрудник лаборатории теоретической физики ИФП СО РАН доктор физико-математических наук Матвей Вульфович Энтин среди научных достижений 2023 года назвал работы Ливерморской лаборатории США по развитию термоядерного синтеза и появление нейросети Chat GPT. Ливерморская лаборатория продолжает воспроизводить прошлогодний положительный результат, когда в результате термоядерной реакции выделилось больше энергии, чем было потрачено на разогрев топлива.
Рассказывая про Chat GPT, Матвей Энтин показал примеры текстов, написанных нейросетью, среди которых была даже научная статья. Ученый добавил, что дал задание Chat GPT объяснить, что такое топологические изоляторы: «Получился очень хороший текст. На мой взгляд, он может служить введением в научную статью. Также я попросил нейросеть решить конкретную задачу, связанную с краевыми состояниями топологического изолятора. Однако, она ответила, что пока не может этого сделать».
Текст и фото предоставлены пресс-службой ИФП СО РАН
https://academcity.org/content/neyroseti-himery-kvantovyy-effekt-holla-i-vatikan