СМИ о нас

01.04.24 01.04.2024 Беларусь сегодня. Российские ученые предложили построить телескоп на Луне для изучения черных дыр

Российские астрономы предложили построить телескоп на поверхности Луны, который бы работал в субтерагерцовом диапазоне электромагнитных волн. Подобная установка позволит ученым получить детальные снимки окрестностей черных дыр и впервые детально изучить движение материи у горизонта событий. Об этом сообщила пресс-служба Астрокосмического центра ФИАН (РФ), пишет ТАСС.

«Лунная антенная решетка, работая совместно с наземной сетью телескопов, позволит рассмотреть тени черных дыр с разрешением до 30 раз лучше, чем это сделал телескоп EHT. Это приведет к прорыву в изучении физики сверхмассивных черных дыр. Также лунная обсерватория будет исследовать раннюю Вселенную через наблюдения спектральных искажений реликтового излучения и изучать некоторые проблемы звездообразования», – говорится в сообщении.

Идею выдвинула группа российских астрономов под руководством главы Астрокосмического центра ФИАН Сергея Лихачева в рамках всестороннего изучения дальнейших перспектив развития субтерагерцовой астрономии в России. В ее рамках астрономы используют электромагнитные волны с частотой в сотни гигагерц и выше для наблюдений за самыми далекими и необычными объектами Вселенной, в том числе за сверхмассивными черными дырами, их выбросами, первыми галактиками мироздания и прочими небесными телами.

В последние годы астрономы из РФ и других стран активно предлагают начать размещать телескопы и обсерватории не только в космосе, но и на поверхности Луны. Их постройка позволит обойти ограничения, накладываемые земной атмосферой, а также защитить телескопы от антропогенных световых и электромагнитных помех. В частности, в апреле 2021 года научный руководитель Института космических исследований Российской академии наук Лев Зеленый предложил разместить на поверхности Луны специальный телескоп, нацеленный на поиски источников космических лучей высоких энергий – заряженных частиц, движущихся с околосветовой скоростью.

https://www.sb.by/articles/rossiyskie-uchenye-predlozhili-postroit-teleskop-na-lune-dlya-izucheniya-chernykh-dyr.html

01.04.24 01.04.2024 Российская академия наук. Разработка концепций субтерагерцовых обсерваторий нового поколения

Сотрудники Астрокосмического центра Физического института им. П.Н. Лебедева РАН разрабатывают сразу несколько концепций субтерагерцовых (частоты от 100 ГГц и выше) обсерваторий нового поколения. В их числе планируется создать компактную наземную антенную решётку, космический интерферометр, а также телескоп, расположенный на поверхности Луны. Наземные антенные решетки смогут работать совместно с наземными телескопами, а также с космической обсерваторией «Миллиметрон» в режиме интерферометра со сверхдлинной базой. Подробнее о новых обсерваториях можно прочесть в журнале «Космические исследования» (Cosmic Research).

Последнее десятилетие ознаменовалось значительными успехами в изучении Вселенной в субтерагерцовом, то есть в миллиметровом и субмиллиметровом диапазоне спектра (частоты от 100 до 1000 ГГц). Во многом этому способствовали успехи космических миссий Herschel и James Webb Telescope. Но большой успех сопутствовал и наземным проектам, таким как телескоп IRAM, интерферометр NOEMA и антенная решетка ALMA. Важным результатом наземных наблюдений стало получение Телескопом Горизонта Событий (Event Horizon Telescope или EHT) изображений сверхмассивных черных дыр в центре нашей Галактики и в галактике M87.

Наблюдения в субтерагерцовой части спектра затрагивают наиболее актуальные вопросы современной астрофизики. Это эволюция ранней Вселенной, процессы образования звезд и планет, поиск и изучение сложных органических соединений в межзвёздной среде и молодых звёздных системах, а также исследование компактных сверхмассивных объектов. Дело в том, что межзвёздная среда более прозрачна на субтерагерцовых частотах по сравнению с радио или инфракрасным диапазонами. Это даёт уникальную возможность непосредственно наблюдать сверхмассивные чёрные дыры в активных ядрах галактик и исследовать поведение вещества в столь экстремальных условиях. Другой нерешённый вопрос связан с формированием «строительных блоков», из которых образовались на нашей планете первые молекулы-репликаторы. Существует предположение, что они появились ещё на этапе формирования планеты или даже звёздной системы. Причём в количестве, достаточном для детектирования будущими обсерваториями. Отдельная задача связана с изучением ранней Вселенной и поиском искажений в спектре реликтового излучения.

В ближайшем будущем планируется создание новых обсерваторий субтерагерцового диапазона. Будет развиваться уже существующая наземная сеть телескопов-интерферометров со сверхдлинными базами (РСДБ), к ней добавят новые инструменты. Однако на высоких частотах возможности наземных обсерваторий существенно ограничены атмосферой Земли. Ещё одна проблема состоит в том, что на обширных пространствах северо-востока Евразии нет обсерваторий субтерагерцового диапазона. Это белое пятно на карте покрытия наземной сети телескопов негативно влияет на качество их наблюдений. Также прорабатываются новые концепции космических обсерваторий и интерферометров. Например, SMVA (Space Millimeter VLBI Array), EHI (Event Horizon Imager), THEZA (TeraHertz Exploration and Zooming-in for Astrophysics) и CAPELLA. Но полноценные наблюдения в субтерагерцовом диапазоне возможны только при развитии одновременно и наземных, и космических обсерваторий.

На сегодняшний день в Российской Федерации практически нет телескопов, способных выполнять наблюдения на частотах выше 100 ГГц. В свою очередь, Астрокосмический центр Физического института им. П.Н. Лебедева РАН (АКЦ ФИАН) активно работает над созданием космической обсерватории «Миллиметрон» (Спектр-М). В новой работе специалисты из АКЦ ФИАН рассмотрели несколько концепций обсерваторий субтерагерцового диапазона. Ими стали проекты субтерагерцовой наземной антенной решетки (массив антенн малого диаметра), космического интерферометра и телескопа, расположенного на поверхности Луны.

Наземная антенная решётка

Прототип решётки для отработки ключевых технологий будет состоять из нескольких антенн (3–6 антенн) диаметром от трёх до пяти метров. В начале его планируют установить в Пущинской радиоастрономической обсерватории (ПРАО), где есть все условия для тестирования системы. После завершения испытаний учёные предполагают создать на базе прототипа антенны и несущей платформы полноценную обсерваторию субтерагерцового диапазона. Она будет состоять из шести полноповоротных антенн диаметром до 8 метров и качеством поверхности антенн порядка 40 микрон. Причём начать наблюдения можно будет уже при наличии трёх антенн. Угловое разрешение получившегося инструмента достигнет 0,59'' угловых секунд. Разместить антенную решётку планируют либо на локальном плато на горе Маяк в Дагестане (высота над уровнем моря 2352 м), либо на пике Хулугайша в Саянах (высота над уровнем моря 3015 м).

Наземная антенная решётка

Наземная антенная решётка

Обсерватория на Луне

С научной точки зрения крайне перспективными будут лунные телескопы, работающие в недоступных на поверхности Земли диапазонах электромагнитного спектра. Это низкочастотный (частота ниже <10 МГц, метровые волны) и высокочастотный (> 100 ГГц, включая дальний инфракрасный диапазон). В первом случае наблюдениям с Земли мешают ограничения ионосферы и техногенный шум радиоэфира, во втором ограничения связаны с поглощением и флуктуациями излучения при прохождении атмосферы. На поверхности Луны эти проблемы отсутствуют. Но научные задачи для высокочастотного диапазона более приоритетные. АКЦ ФИАН проработал сразу несколько вариантов радиоинтерферометрической антенной решётки, в зависимости от места размещения обсерватории на Луне.

Первый вариант предполагает размещение всего комплекса антенных решёток внутри тёмного кратера, в который не проникают лучи Солнца. Это снизило бы нагрузку на криосистемы научных приборов, но усложнило бы их энергообеспечение. Решением этой проблемы может стать специальный служебный модуль, который совершит посадку в зону, освещаемую Солнцем. Помимо генерации и передачи электроэнергии для антенных модулей в кратере он мог бы осуществлять обмен научными и служебными данными между обсерваторией и Землёй (возможно, через окололунный орбитальный ретранслятор).

Другой вариант — строительство наблюдательного комплекса в приполярной зоне на освещаемом Солнцем участке. Это снимает проблему энергообеспечения антенн и делает их более автономными. Причём отдельные элементы антенной решётки могут быть как стационарными, так и передвижными конструкциями. Перемещающиеся по поверхности антенны могли бы занять на поверхности Луны оптимальную для наблюдений локацию. Правда, это может создавать технические трудности в виду больших габаритов аппаратов.

Лунная антенная решетка, работая совместно с наземной сетью телескопов, позволит «рассмотреть» тени черных дыр с разрешением до 30 раз лучше, чем это сделал Телескоп горизонта событий. Это приведёт к прорыву в изучении физики сверхмассивных чёрных дыр. Также лунная обсерватория будет исследовать раннюю Вселенную через наблюдения спектральных искажений реликтового излучения и изучать некоторые проблемы звёздообразования.

Обсерватория на Луне

Обсерватория на Луне

Космический интерферометр

Третье перспективное направление, которое может использовать опыт создания универсальной антенной решетки, это космический интерферометр (интерферометр «космос–космос»). Астрокосмический центр Физического института им. П.Н. Лебедева Российской академии наук накопил огромный опыт в процессе работы над проектами обсерваторий «Радиоастрон» и «Миллиметрон». Поэтому новый космический интерферометр может иметь проекции баз до 1.5 миллионов километров и более. Это позволит достичь предельно высокого углового разрешения, необходимого для исследования сверхкомпактных астрономических объектов, например, черных дыр, внегалактических мазерных источников и нейтронных звезд. Космический интерферометр, в отличие от антенной решётки, расположенной на поверхности Луны, сможет вести наблюдения близких окрестностей сверхмассивных чёрных дыр в динамике. Это позволит наблюдать движение вещества в экстремальных условиях в непосредственной близости от горизонта событий. Подобные наблюдения возможны в так называемом режиме «мгновенного снимка» (snapshot), когда за счёт удачной конфигурации орбит космических телескопов удаётся восстановить относительно качественное изображение источника за кратчайшее время.

Наиболее подходящие и ближайшие объекты для подобных исследований — это Sgr A* или М87.

Космический интерферометр

Космический интерферометр

Источник: отдел по связям с общественностью ФИАН.

https://new.ras.ru/activities/news/razrabotka-kontseptsiy-subteragertsovykh-observatoriy-novogo-pokoleniya/

01.04.24 01.04.2024 ТАСС. Российские ученые предложили построить телескоп на Луне для изучения черных дыр

Как отмечают исследователи, сейчас в России фактически нет телескопов, способных выполнять наблюдения на частотах выше 100 ГГц

МОСКВА, 1 апреля. /ТАСС/. Российские астрономы предложили построить телескоп на поверхности Луны, который бы работал в субтерагерцовом диапазоне электромагнитных волн. Подобная установка позволит ученым получить детальные снимки окрестностей черных дыр и впервые детально изучить движение материи у горизонта событий. Об этом в понедельник сообщила пресс-служба Астрокосмического центра ФИАН.

"Лунная антенная решетка, работая совместно с наземной сетью телескопов, позволит рассмотреть тени черных дыр с разрешением до 30 раз лучше, чем это сделал телескоп EHT. Это приведет к прорыву в изучении физики сверхмассивных черных дыр. Также лунная обсерватория будет исследовать раннюю Вселенную через наблюдения спектральных искажений реликтового излучения и изучать некоторые проблемы звездообразования", - говорится в сообщении.

Идею выдвинула группа российских астрономов под руководством главы Астрокосмического центра ФИАН Сергея Лихачева в рамках всестороннего изучения дальнейших перспектив развития субтерагерцовой астрономии в России. В ее рамках астрономы используют электромагнитные волны с частотой в сотни гигагерц и выше для наблюдений за самыми далекими и необычными объектами Вселенной, в том числе за сверхмассивными черными дырами, их выбросами, первыми галактиками мироздания и прочими небесными телами.

Как отмечают исследователи, сейчас в России фактически нет телескопов, способных выполнять наблюдения на частотах выше 100 ГГц, а также при этом планируется к запуску пока лишь одна такая орбитальная миссия, космическая обсерватория "Миллиметрон". Руководствуясь подобными соображениями, Лихачев и его коллеги подготовили проекты наземных и лунных субтерагерцовых телескопов, которые могли бы восполнить недостаток наблюдательных мощностей в данном диапазоне электромагнитных волн.

В частности, ученые предлагают разработать набор из шести антенн диаметром в 8 м, способных улавливать субтерагерцовое излучение, и установить их на горе Маяк в Дагестане или на пике Хулугайша в Саянах. Схожий набор антенн можно также установить на поверхности Луны в постоянно затененном кратере или в приполярных регионах спутника Земли. Эту лунную обсерваторию, по словам астрономов, также можно будет объединить в гигантскую виртуальную антенну вместе с их наземными аналогами и космическими обсерваториями, для чего будут использоваться технологии, которые ранее задействовались в рамках проекта "Радиоастрон".

Этот подход, как надеются ученые, позволит астрономам впервые проследить за движением материи в самых ближайших окрестностях сверхмассивных черных дыр, в том числе у черной дыры Sgr A*, расположенной в центре Млечного Пути. Аналогичные снимки можно будет предположитьельно получить и для черной дыры в галактике M87, чью "тень" недавно удалось изучить ученым при помощи телескопа EHT, объединяющего мощности крупнейших субтерагерцовых обсерваторий мира. Эти изображения радикально расширят представления ученых о поведении материи у горизонта событий, подытожили исследователи.

О лунных телескопах

В последние годы астрономы из России и других стран мира активно предлагают начать размещать телескопы и обсерватории не только в космосе, но и на поверхности Луны. Их постройка позволит обойти ограничения, накладываемые земной атмосферой, а также защитить телескопы от антропогенных световых и электромагнитных помех. В частности, в апреле 2021 года научный руководитель Института космических исследований Российской академии наук (РАН) Лев Зеленый предложил разместить на поверхности Луны специальный телескоп, нацеленный на поиски источников космических лучей высоких энергий - заряженных частиц, движущихся с околосветовой скоростью.

https://nauka.tass.ru/nauka/20411039

01.04.24 01.04.2024 Научная Россия. Российские учёные хотят создать самые зоркие телескопы. Один из них будет расположен на Луне

Учёные из Астрокосмического центра Физического института им. П.Н. Лебедева РАН разрабатывают сразу несколько концепций субтерагерцовых (частоты от 100 ГГц и выше) обсерваторий нового поколения. В их числе планируется создать компактную наземную антенную решётку, космический интерферометр, а также телескоп, расположенный на поверхности Луны. Наземные антенные решетки смогут работать совместно с наземными телескопами, а также с космической обсерваторией «Миллиметрон» в режиме интерферометра со сверхдлинной базой. Подробнее о новых обсерваториях можно прочесть в журнале «Космические исследования» (Cosmic Research).


Наземная антенная решётка

Последнее десятилетие ознаменовалось значительными успехами в изучении Вселенной в субтерагерцовом, то есть в миллиметровом и субмиллиметровом диапазоне спектра (частоты от 100 до 1000 ГГц). Во многом этому способствовали успехи космических миссий Herschel и James Webb Telescope. Но большой успех сопутствовал и наземным проектам, таким как телескоп IRAM, интерферометр NOEMA и антенная решетка ALMA. Важным результатом наземных наблюдений стало получение Телескопом горизонта событий (Event Horizon Telescope или EHT) изображений сверхмассивных черных дыр в центре нашей Галактики и в галактике M87.

Наблюдения в субтерагерцовой части спектра затрагивают наиболее актуальные вопросы современной астрофизики. Это эволюция ранней Вселенной, процессы образования звезд и планет, поиск и изучение сложных органических соединений в межзвёздной среде и молодых звёздных системах, а также исследование компактных сверхмассивных объектов. Дело в том, что межзвёздная среда более прозрачна на субтерагерцовых частотах по сравнению с радио- или инфракрасным диапазонами. Это даёт уникальную возможность непосредственно наблюдать сверхмассивные чёрные дыры в активных ядрах галактик и исследовать поведение вещества в столь экстремальных условиях. Другой нерешённый вопрос связан с формированием «строительных блоков», из которых образовались на нашей планете первые молекулы-репликаторы. Существует предположение, что они появились ещё на этапе формирования планеты или даже звёздной системы. Причём в количестве, достаточном для детектирования будущими обсерваториями. Отдельная задача связана с изучением ранней Вселенной и поиском искажений в спектре реликтового излучения.

В ближайшем будущем планируется создание новых обсерваторий субтерагерцового диапазона. Будет развиваться уже существующая наземная сеть телескопов-интерферометров со сверхдлинными базами (РСДБ), к ней добавят новые инструменты. Однако на высоких частотах возможности наземных обсерваторий существенно ограничены атмосферой Земли. Ещё одна проблема состоит в том, что на обширных пространствах северо-востока Евразии нет обсерваторий субтерагерцового диапазона. Это белое пятно на карте покрытия наземной сети телескопов негативно влияет на качество их наблюдений. Также прорабатываются новые концепции космических обсерваторий и интерферометров. Например, SMVA (Space Millimeter VLBI Array), EHI (Event Horizon Imager), THEZA (TeraHertz Exploration and Zooming-in for Astrophysics) и CAPELLA. Но полноценные наблюдения в субтерагерцовом диапазоне возможны только при развитии одновременно и наземных, и космических обсерваторий.

На сегодняшний день в Российской Федерации практически нет телескопов, способных выполнять наблюдения на частотах выше 100 ГГц. В свою очередь, Астрокосмический центр Физического института им. П.Н. Лебедева РАН (АКЦ ФИАН) активно работает над созданием космической обсерватории «Миллиметрон» (Спектр-М). В новой работе специалисты из АКЦ ФИАН рассмотрели несколько концепций обсерваторий субтерагерцового диапазона. Ими стали проекты субтерагерцовой наземной антенной решетки (массив антенн малого диаметра), космического интерферометра и телескопа, расположенного на поверхности Луны.

Наземная антенная решётка

Прототип решетки для отработки ключевых технологий будет состоять из нескольких антенн (3–6 антенн) диаметром от трёх до пяти метров. В начале его планируют установить в Пущинской радиоастрономической обсерватории (ПРАО), где есть все условия для тестирования системы. После завершения испытаний учёные предполагают создать на базе прототипа антенны и несущей платформы полноценную обсерваторию субтерагерцового диапазона. Она будет состоять из шести полноповоротных антенн диаметром до 8 метров и качеством поверхности антенн порядка 40 микрон. Причём начать наблюдения можно будет уже при наличии трёх антенн. Угловое разрешение получившегося инструмента достигнет 0.59'' угловых секунд. Разместить антенную решётку планируют либо на локальном плато на горе Маяк в Дагестане (высота над уровнем моря 2352 м), либо на пике Хулугайша в Саянах (высота над уровнем моря 3015 м).

Обсерватория на Луне

Обсерватория на Луне

С научной точки зрения, крайне перспективными будут лунные телескопы, работающие в недоступных на поверхности Земли диапазонах электромагнитного спектра. Это низкочастотный (частота ниже <10 МГц, метровые волны) и высокочастотный (> 100 ГГц, включая дальний инфракрасный диапазон). В первом случае наблюдениям с Земли мешают ограничения ионосферы и техногенный шум радиоэфира, во втором ограничения связаны с поглощением и флуктуациями излучения при прохождении атмосферы. На поверхности Луны эти проблемы отсутствуют. Но научные задачи для высокочастотного диапазона более приоритетные. АКЦ ФИАН проработал сразу несколько вариантов радиоинтерферометрической антенной решётки в зависимости от места размещения обсерватории на Луне.

Первый вариант предполагает размещение всего комплекса антенных решёток внутри тёмного кратера, в который не проникают лучи Солнца. Это снизило бы нагрузку на криосистемы научных приборов, но усложнило бы их энергообеспечение. Решением этой проблемы может стать специальный служебный модуль, который совершит посадку в зону, освещаемую Солнцем. Помимо генерации и передачи электроэнергии для антенных модулей в кратере он мог бы осуществлять обмен научными и служебными данными между обсерваторией и Землёй (возможно, через окололунный орбитальный ретранслятор).

Другой вариант – это строительство наблюдательного комплекса в приполярной зоне на освещаемом Солнцем участке. Это снимает проблему энергообеспечения антенн и делает их более автономными. Причём отдельные элементы антенной решётки могут быть как стационарными, так и передвижными конструкциями. Перемещающиеся по поверхности антенны могли бы занять на поверхности Луны оптимальную для наблюдений локацию. Правда, это может создавать технические трудности ввиду больших габаритов аппаратов.

Лунная антенная решетка, работая совместно с наземной сетью телескопов, позволит «рассмотреть» тени черных дыр с разрешением до 30 раз лучше, чем это сделал Телескоп горизонта событий. Это приведет к прорыву в изучении физики сверхмассивных черных дыр. Также лунная обсерватория будет исследовать раннюю Вселенную через наблюдения спектральных искажений реликтового излучения и изучать некоторые проблемы звёздообразования.

Космический интерферометр

Космический интерферометр

Третье перспективное направление, которое может использовать опыт создания универсальной антенной решетки, это космический интерферометр (интерферометр «космос–космос»). Астрокосмический центр Физического института им. П.Н. Лебедева Российской академии наук накопил огромный опыт в процессе работы над проектами обсерваторий «Радиоастрон» и «Миллиметрон». Поэтому новый космический интерферометр может иметь проекции баз до 1.5 миллионов километров и более. Это позволит достичь предельно высокого углового разрешения, необходимого для исследования сверхкомпактных астрономических объектов, например, черных дыр, внегалактических мазерных источников и нейтронных звезд. Космический интерферометр, в отличие от антенной решётки, расположенной на поверхности Луны, сможет вести наблюдения близких окрестностей сверхмассивных чёрных дыр в динамике. Это позволит наблюдать движение вещества в экстремальных условиях в непосредственной близости от горизонта событий. Подобные наблюдения возможны в так называемом режиме «мгновенного снимка» (snapshot), когда за счёт удачной конфигурации орбит космических телескопов удаётся восстановить относительно качественное изображение источника за кратчайшее время. Наиболее подходящие и ближайшие объекты для подобных исследований – это Sgr A* или М87.

Источник информации и фото: отдел по связям с общественностью ФИАН​

https://scientificrussia.ru/articles/rossijskie-ucenye-planiruut-sozdat-samye-zorkie-teleskopy-odin-iz-nih-budet-raspolozen-na-lune

06.03.24 06.03.2024 Коммерсант. Героев науки и культуры нужно знать в лиц

На федеральной территории «Сириус» проходит Всемирный фестиваль молодежи (ВФМ). Этот престижный молодежный форум собрал 20 тыс. участников из 190 стран мира. У входа в Парк науки и искусств участников и гостей ВФМ встречали билборды. На них — фотопортреты героев, лауреатов премий Российской Федерации в области науки и культуры. Фотовыставка «Физики и лирики» (Science & Art) — новый проект фонда развития научно-культурных связей «Вызов» при поддержке Газпромбанка. Эта выставка не только про культуру и науку, она про нашу страну — ее развитие, ценности, достижения.

https://im.kommersant.ru/Issues.photo/NAUKA_Online/2024/03/05/KMO_111307_55760_1_t249_111144.webp

Фото: Фотобанк Фонда «Вызов»

Два в одном

20 и 10. В этом есть какая-то магия чисел. Из 20 тыс. участников Всемирного фестиваля молодежи 10 тыс. представляют Россию, 10 тыс.— зарубежье. Из 20 героев фотовыставки «Физики и лирики» 10 представляют науку, 10 — культуру.

Что их объединяет? Как родилась идея выставки «Физики и лирики»? На этот вопрос отвечает Леонид Шляховер, президент фонда развития научно-культурных связей «Вызов»: «Работа ученых влияет на жизнь каждого из нас, но при этом сами они, как правило, остаются за кадром. Мы хотим это изменить, по-новому расставив акценты. В проекте “Физики и лирики” мы объединили выдающихся деятелей культуры и науки, чтобы показать: ученые достойны быть в центре внимания не меньше, чем актеры, режиссеры, музыканты».

Лица героев фотовыставки «Физики и лирики» запечатлел объектив фотографа Владимира Широкова. Его имя — бренд в мире фотографии. За три десятилетия своей карьеры он снял более 500 знаменитостей. Вот что Владимир Широков говорит о работе над проектом «Физики и лирики»: «Как фотографу мне было очень интересно поработать в проекте на стыке науки и культуры. Я убедился в том, что ученые не менее творческие люди, чем деятели искусства. И те, и другие готовы идти за вдохновением, экспериментировать, импровизировать».

«Физики и лирики» — представители разных поколений (кому-то едва за 30, кому-то уже за 90), представители разных сфер деятельности. Физика, химия, биология, компьютерные технологии, живопись, музыка, цирк, балет, театр, кино… Герои проекта показаны не в рабочей, а в торжественной обстановке — как в момент триумфа, заслуженного признания, награждения премией. Эти люди — гордость страны, те, на кого хочется и нужно равняться. Фотопортреты выглядят так, словно они сняты для обложки глянцевого журнала. Если бы существовал журнал «Наука + культура», какие бы вопросы обсуждались на его страницах?

Что объединяет науку и культуру? Что общего в работе ученых и мастеров культуры? Важен ли научный подход в искусстве? Нужно ли вдохновение в науке?

Фотовыставка «Физики и лирики» заставляет задуматься над этими вопросами. На выставке каждый снимок дополняет видеовизитка, в которой герои рассказывают о том, что же общего у «физиков» и «лириков», деятелей науки и деятелей культуры. Давайте послушаем их ответы.

Союз науки и культуры

https://im.kommersant.ru/Issues.photo/NAUKA_Online/2024/03/05/KMO_111307_55762_1_t249_111212.webp

Фото: Фотобанк Фонда «Вызов»

Что объединяет науку и культуру? Вот как ответил на этот вопрос лауреат Национальной премии в области будущих технологий «Вызов» в номинации «Прорыв», вице-президент по фотонике, руководитель лаборатории гибридной фотоники Сколковского института науки и технологий (Сколтех) профессор Павлос Лагудакис: «Когда ученый совершает открытие, это невероятные ощущения. Ты чувствуешь себя демиургом, творцом. Мне кажется, это очень похоже на эмоции, которые испытывает художник, завершив картину, или музыкант, исполнив концерт». Павлос Лагудакис родился в Греции, но выбрал для жизни и научной работы Россию, потому что здесь больше возможностей для творчества. Говоря о совместной работе с российскими коллегами, он отмечает: «То, что мы делаем,— важно не только для нас, это важно для большого научного сообщества, для страны».

Передаем слово знаменитому музыканту. Юрий Башмет — альтист, дирижер Государственного симфонического оркестра «Новая Россия», лауреат премии правительства Российской Федерации в области культуры за 2023 год. Вот его мнение: «Дисциплина. Это нужно и в физике, и в лирике. Само понимание, как возникает звук, это скорее физика. Как только возникает состояние, значит, включается душа».

«Искусство служит народу, так же как и наука»,— уверен Аскольд Запашный, представитель легендарной цирковой династии Запашных в четвертом поколении, лауреат премии правительства Российской Федерации в области культуры.

Профессор кафедры нейротехнологий Института биологии и биомедицины ННГУ им. Н. И. Лобачевского Сусанна Гордлеева — лауреат премии президента РФ в области науки и инноваций для молодых ученых. «Наука — это то же самое искусство,— уверена Сусанна Гордлеева.— И когда ты пытаешься сделать не просто какой-то сухой научный вывод о чем-то, а добавить к этому изящества и красоты, это, мне кажется, только улучшает вообще все в науке и в смыслах, которые мы, как ученые, друг другу рассказываем, хотим донести до мира. Это прекрасно. У тебя появляется сначала какая-то идея. После этого ты думаешь, как исследовать эту идею. Для построения пути этого исследования нужно именно вдохновение. В хорошем результате всегда кроме вдохновения есть еще регулярный труд. Без этого никуда».

Актриса Юлия Пересильд — лауреат Государственной премии Российской Федерации в области литературы и искусства. Юлия — единственная киноактриса, участвовавшая в съемках кинофильма в космосе, на Международной космической станции. «Я столкнулась с миром физиков,— рассказывает Юлия Пересильд.— В моей жизни вообще соединение космоса и соединение кинопроизводства, кино — это как раз то невозможное соединение физиков и лириков, которое все-таки нам удалось сделать. Когда они объединяются, случается какое-то большое настоящее, очень крутое открытие. Мне кажется, что наш полет — это вот именно про это».

https://im.kommersant.ru/Issues.photo/NAUKA_Online/2024/03/05/KMO_111307_55781_1_t249_131611.webp

Фото: Фотобанк Фонда «Вызов»

«Я 20 лет прожил и проработал на Западе, но всегда хотел вернуться в Россию. Но хотел вернуться на белом коне. И я надеюсь, что это получилось»,— рассказывает фармаколог и нейробиолог Рауль Гайнетдинов, директор Института трансляционной биомедицины СПбГУ, лауреат Национальной премии в области будущих технологий «Вызов» в номинации «Ученый года». «Врач — он и физик, и лирик одновременно. И эмоции, и химия. Каждый — это как палитра, понимаете,— немножко должен добавить красок в эту нашу жизнь. И ученые, и поэты, и писатели. Без этих красок жизнь невозможна полноценная»,— говорит Рауль Гайнетдинов. В своей работе он видит сходство с творчеством художников-авангардистов Кандинского и Малевича: «Они ломали парадигму. И я пытаюсь так же сломать».

Послушаем теперь, что скажет о связи науки и культуры художник. «Глаз должен быть. Это от рождения. Какая краска должна лечь рядом с этой. Тональность холста. Колорит. Это от природы. А разум нужен, конечно. Чтобы анализировать, чтобы знать. В моей работе нужен научный подход. Чем больше ты знаешь, тем полнее ты можешь высказаться»,—говорит живописец и график, лауреат Государственной премии Российской Федерации в области литературы и искусства Павел Никонов.

На открытии фотовыставки присутствовали несколько ее героев — Павлос Лагудакис, Илья Семериков, Ирина Тимофеева. Они общались с гостями фестиваля, фотографировались на фоне своих парадных портретов.

Химик Ирина Тимофеева, лауреат премии президента РФ в области науки и инноваций для молодых ученых, вспомнила стихотворение Бориса Слуцкого, которое называется так же, как и выставка,— «Физики и лирики». «Мне кажется, одни других вдохновляют»,— поделилась мнением Ирина Тимофеева. Она вспомнила, как однажды рассыпала краситель в раковину и получилось похоже на картину Ван Гога.

«Я сам во многом лирик»,— признался физик (и в кавычках, и без) Илья Семериков, научный сотрудник Физического института им. П. Н. Лебедева РАН (ФИАН), заместитель руководителя научной группы в Российском квантовом центре (РКЦ), лауреат Национальной премии в области будущих технологий «Вызов» в номинации «Перспектива». «Квантовый компьютер для меня — это своеобразное произведение искусства. Это вещь, про которую я думаю как про картину, как про человека, в каком-то смысле»,— говорит Илья Семериков.

Если так, может, и среди «лириков» найдутся «физики»? Послушаем актрису Александру Ребенок, лауреата Национальной премии в области кинематографии «Золотой орел»: «Театр — это тоже наука. И актерское ремесло — это наука. Ты ищешь формулу для своего персонажа, чтобы его доставить из пункта А в пункт Б. И персонаж, разобранный на молекулы, начинает оживать, и ты вместе с ним испытываешь подлинные чувства».

Наша наука, наша культура, наша страна

https://im.kommersant.ru/Issues.photo/NAUKA_Online/2024/03/05/KMO_111307_55763_1_t249_111222.webp

Фото: Фотобанк Фонда «Вызов»

Наука и культура имеют общие корни — человеческое любопытство и желание изменить окружающий нас мир, сделать его лучше, понятнее, красивее. «Физики» изучают законы природы и способы их применения, «лирики» имеют дело с миром мыслей и эмоций человека. Лучшие представители культуры и науки всегда инноваторы, создатели новых материй, новых смыслов. Умение наблюдать, видеть и понимать то, чего не видят другие, чтобы увиденное и осознанное воплощать в своей работе и творчестве,— это тоже объединяет наших героев. Наука и искусство влияют друг на друга, вдохновляют друг друга. Сумма науки и культуры — прогресс. Они вместе приносят пользу и дарят радость обществу, всем нам.

Герои фотопроекта «Физики и лирики» солидарны в том, что они хотят жить, работать, творить в России.

Страна героев

https://im.kommersant.ru/Issues.photo/NAUKA_Online/2024/03/05/KMO_111307_55765_1_t249_111245.webp

Фото: Фотобанк Фонда «Вызов»

Всемирный фестиваль молодежи собрал на своей площадке представителей разных сфер деятельности — молодых политиков, дипломатов, предпринимателей, ученых, деятелей культуры. Одна из задач ВФМ — рассказать о научном потенциале нашей страны, вдохновить молодежь наукой, сделать научные открытия и ученых символами успеха в России. Такие же задачи ставит перед собой и фонд развития научно-культурных связей «Вызов». В конце 2023 года состоялась торжественная церемония вручения Национальной премии в области будущих технологий «Вызов», учрежденной фондом «Вызов» при поддержке Газпромбанка. В числе героев фотовыставки «Физики и лирики» есть и лауреаты этой премии.

Можно быть уверенным, что среди тех, кто сейчас участвует во Всемирном фестивале молодежи, наверняка есть будущие звезды науки и культуры, лауреаты престижных премий, которые еще не вручены. Те, кто еще должен совершить свое открытие, найти свою формулу, изобрести свой прибор, написать свою картину, сыграть свою роль — роль в науке, культуре, истории России. Пройдет время, и мы узнаем их имена, будем узнавать их лица.

https://www.kommersant.ru/doc/6552736

29.03.24 27.03.2024 Московский комсомолец. Российские ученые создали установку, чтобы доказать возможность зарождения жизни в космосе
Глубокий космос с вакуумом и холодным светом звезд, оказывается, можно создать в обычной лаборатории. Первую в России экспериментальную установку создали сотрудники Самарского филиала Физического института им. П.Н. Лебедева РАН. Они намерены изучать механизмы зарождения жизни в космосе и на Земле.

В лаборатории смоделированы условия как на Плутоне

Установка, в которой моделируются условия происхождения жизни. Фото: Иван Антонов.

Пока одни ученые спорят о том, как могла появиться жизнь: из космоса прилетела или появилась на Земле, другие – экспериментируют. На днях своеобразный «инкубатор» для зарождения сложных молекул был представлен на заседании ученого совета РАН.

С виду он напоминает компактный ускоритель частиц – набор цилиндрических камер, труб, проводов. Вся установка – длиной с два метра будет. Так вот она какая – земная модель Вселенной!

Старший научный сотрудник Самарского филиала ФИАН Иван Антонов поясняет, что кубическая установка, возможно, была бы более внушительной, чтобы выдерживать внешнее давление атмосферы. 

- Для кубической нам пришлось бы стенки цилиндров делать по полтора сантиметра толщиной, из-за чего вся установка могла бы весить полтонны, – поясняет Антонов. – Цилиндры лучше выдерживают давление снаружи, потому их стенки тоньше, и вес всей нашей конструкции составляет всего несколько десятков килограмм. Мы моделируем в ней глубокий вакуум межзвездной среды: холодных молекулярных облаков и областей звездообразования.

 Ученые давно поняли, что органика появляется не только в живых организмах. Она есть и в кометах, и в астероидах, простые аминокислоты – составляющие белков можно встретить парящими в облаках межзвездного газа.

- Создаваемый нами в установке глубокий вакуум достаточно близок к вакууму звездной среды, чтобы можно было изучать процессы которые там происходят, – говорит Иван Антонов. – Внутри вакуумной камеры у нас – специальная, охлаждаемая до температуры жидкого гелия поверхность. Это 5 Кельвинов, – такова температура межзвездной среды. Мы напыляем на эту пластину лед, состоящий из простых органических молекул, к примеру, метана.

– От чего зависит выбор молекул?

– Мы выбираем такой состав льда, какой встречается на ледяных мантиях пылевых частиц в межзвездном пространстве. Потом мы эту модель космической ледяной мантии подвергаем облучению. Можем использовать разные его виды, но сейчас используем ультрафиолетовое, похожее на свет звезд на определенной спектральной линии атомарного водорода. Она называется Lyman-α (линия Лаймана-альфа), это жесткий ультрафиолет. Он обладает способностью вызывать химические реакции во льду, которые приводят к образованию более сложных молекул из простых.

– Расскажите о вашем первом опыте, – появление каких молекул вы уже осуществили в вашей установке?

– Как я уже сказал, мы поработали с метаном. Наморозили метановый лед на криогенной подложке и облучили. В результате мы увидели, что после облучения в камере появились более сложные углеводороды: пропан и бутан.

– Где в космосе теоретически могла бы произойти подобная реакция?

– Теоретически это могло бы произойти за пределами Солнечной системы. На Юпитере и Сатурне метан – в жидком состоянии, а вот на Плутоне и его спутнике Хароне, на кометах пояса Койпера – вполне возможен замороженный метан. В той области космоса, как мы знаем, много метана, замерзая, он образует лед, почти такой, какой мы получили в нашей установке. А за счет того, что туда доходит солнечное излучение, могут образовываться и пропан с бутаном.

Молекула звездной пыли. 100 нм. Фото: Ralf I. Kaiser

– Если в вашу установку добавить другие молекулы, жизнеобразующие, они могут привести к появлению биомолекул?

- Да. Но глобальная цель — понять процессы химической эволюции Вселенной, – как в космосе образовались те сложные молекулы, которые мы сегодня наблюдаем.

– Можете сказать, сколько их найдено и что это за молекулы?

– Сейчас найдено более 200 разных молекул, некоторые из них довольно простые: вода, монооксид углерода, метан, аммиак, метанол, формальдегид, диоксид углерода и другие, но есть и более сложные, такие как этанол или метилформиат.

– Как вы исследуете то, что получилось на вашей ледяной подложке?

– Во время проведения химической реакции лед испаряется и образовавшиеся частицы оказываются в вакууме, где мы и их и детектируем при помощи масс-спектрометра.

– Если у вас все получится, то теория о том, что жизнь могла прилететь к нам из космоса, будет доказана?

– Вероятно, да. Нас мотивировало к данному исследованию миссия «Розетта», – зонд, который нашел на комете 67Р/Чурюмова — Герасименко простую аминокислоту — глицин. Считается, что эта аминокислота может образовываться из аммиака, цианида и формальдегида. Для этого ей необходимо только присутствие воды и солнечной энергии. Подобные аминокислоты, вплоть до составных частей белков, были найдены и в метеоритном веществе, к примеру, в метеорите "Мерчисон", упавшем в Австралии в 1969 году. Эти вещества теоретически могли быть основой для образования более сложных организмов на Земле. То есть межзвездная химическая эволюция могла бы быть признана нами как основа для образования жизни.

– А условия ранней Земли в вашей установке можно создать?

– Там было горячо и плотность высокая. Для создания таких условий нам может пригодиться другая установка, в которой мы изучаем процессы горения.

https://www.mk.ru/science/2024/03/27/rossiyskie-uchenye-sozdali-ustanovku-chtoby-dokazat-vozmozhnost-zarozhdeniya-zhizni-v-kosmose.html

29.03.24 25.03.2024 Наука и жизнь. Квантовые технологии – путь развития науки

Ректор РЭУ им. Г.В. Плеханова Иван Лобанов провёл рабочую встречу с руководителем научной группы «Квантовые информационные технологии» Российского квантового центра (РКЦ) Алексеем Фёдоровым и директором по цифровизации госкорпорации «Росатом» Екатериной Солнцевой в рамках VI Международного форума «Шаг в будущее: искусственный и интеллект и цифровая экономика».

Квантовые технологии – перспективная область физики, изучающая квантовую механику и разработку инноваций на основе кванта — неделимой частицы, атома или фотона. Необходимость квантовых исследований в ходе рабочей встречи подчеркнул Иван Лобанов.

«Технологии в области кванта – одна из сложнейших и интереснейших сфер физической науки. Постквантовые алгоритмы помогают обеспечить надежную защиту от киберугроз, решают важные задачи фундаментальной и прикладной науки – от диагностики заболеваний и разработки лекарств до создания новых конструкционных материалов для отечественной оборонной, автомобильной и космической промышленности. Специалисты в этой сфере особенно востребованы сегодня. В Плехановском университете работают лаборатории по исследованию искусственного интеллекта, которые изучают в том числе технологии на квантовой основе», – отмечает ректор Плехановского университета Иван Лобанов.

Проблемная сессия «Квантовый потенциал» VI Международного научного форума «Шаг в будущее: искусственный и интеллект, и цифровая экономика» стала местом для обсуждения вопросов подготовки квалифицированных кадров для отрасли, разработки квантовой коммуникационной платформы экономики данных, роли квантовых технологий в медицине, железнодорожной сфере, создания квантового компьютера. Модератором дискуссии выступил Алексей Федоров.  

«Мы находимся на этапе бурного развития квантовых технологий, которое ставит перед нами непростые задачи по обучению новых кадров и развитию у них нужных компетенций. Сегодня в этой перспективной сфере нужны люди, которые позволят не только разработать квантовый компьютер, но и внедрить его в экономический оборот», – говорит руководитель научной группы РКЦ.

Директор по цифровизации государственной корпорации по атомной энергии «Росатом» Екатерина Солнцева подчеркнула, что жизнь человека кардинально изменится в течение ближайших 10-15 лет. 

«Очень важно, чтобы у нас было больше специалистов в области физики. Вместе с этим необходимо, чтобы люди других специальностей умели работать с квантовыми технологиями как пользователи. Новое поколение, которое появится на горизонте 2030-2035 года, с одной стороны, будет состоять из людей, которые смогут переобучиться и адаптироваться под новые условия жизни, и молодого поколения, которое составит основу общества», – обратила внимание спикер.

Первый проректор по разработке и реализации стратегии развития университета НИТУ МИСИС Сергей Салихов, поднимая тему обучения будущих специалистов для отрасли, отметил, что квантовый инженер прежде всего должен иметь глубокие знания по математике, квантовой физике и оптике, разбираться в схемотехнике и дизайне, электронике и программировании.

О перспективах развития квантовых технологий высказался старший научный сотрудник СП «Квант» (Росатом) Дмитрий Чермошенцев. Он отметил, что разработка новых алгоритмов существенно сократила дистанцию между применением квантовых алгоритмов и квантовых вычислений.

https://www.nkj.ru/prtnews/50103/

25.03.24 20.03.2024 Телеграм-канал ТАСС. В Самаре открыта первая в России установка по изучению возникновения жизни

В Самаре открыли первую в РФ установку по изучению механизмов появления жизни на Земле. Проект представили в СФ ФИАН, передал корреспондент ТАСС.

Установка мирового уровня воспроизводит условия глубокого вакуума межзвездной среды — и холодных молекулярных облаков, и областей звездообразования. Она позволяет исследовать эволюцию органических молекул в галактике. Ученые проверяют гипотезу о зарождении молекул в реакциях космических льдов.

Подобные разработки существуют только в США и Китае.

https://t.me/tass_science/1591

25.03.24 24.03.2024 Мир24. Установку для изучения механизмов зарождения жизни на Земле создали в Самаре

ФОТО : РОСКОСМОС

Установку, воспроизводящую условия глубокого космоса для изучения механизмов зарождения жизни на Земле, создали ученые Самарского филиала Физического института им. П.Н. Лебедева РАН, пишет издание argumenti.ru.

По словам разработчиков, установка воспроизводит условия глубокого вакуума межзвездной среды, включая холодные молекулярные облака и области звездообразования. Она дает возможность исследовать эволюцию органических молекул в галактике и проверить гипотезу о зарождении молекул в реакциях космических льдов.

Установка, аналоги которой имеются только в США и Китае, стала ключевым элементом Центра лабораторной астрофизики Самарского филиала ФИАН, отмечают ученые.

Ранее ученые Самарского национального исследовательского университета имени С.П. Королева вместе с коллегами из филиала ФИАН и американскими физиками разработали методику определения планет, пригодных для жизни. Она основана на исследовании излучения, которое дает кислород в синглетном состоянии. Физики определяют процентное содержание кислорода в атмосфере, а, значит, и возможность жизни на подобных планетах.

https://mir24.tv/news/16584806/ustanovku-dlya-izucheniyu-mehanizmov-zarozhdeniya-zhizni-na-zemle-sozdali-v-samare

25.03.24 24.03.2024 Аргументы недели. В Самаре открыли установку по изучению механизмов зарождения жизни на Земле

Первую в России экспериментальную установку, воспроизводящую условия глубокого космоса для изучения механизмов зарождения жизни на Земле, представили на заседании ученого совета Самарского филиала Физического института им. П. Н. Лебедева Российской академии наук (РАН), сообщает ТАСС.

Установка мирового уровня воспроизводит условия глубокого вакуума межзвездной среды - и холодных молекулярных облаков, и областей звездообразования. Она позволяет исследовать эволюцию органических молекул в галактике. Ученые проверяют гипотезу о зарождении молекул в реакциях космических льдов.

Подобные установки существуют только в США и Китае.

Установка стала ключевым элементом Центра лабораторной астрофизики СФ ФИАН.

https://argumenti.ru/society/nature/2024/03/890524

Подкатегории