СМИ о нас

27.09.24 27.09.2024 Атомная Энергия 2.0. ФИАН, НМИЦ Радиологии, МИФИ И Курчатовский институт проведут VI Международную молодёжную школу «Инновационные ядерно-физические методы высокотехнологичной медицины»

C 24 по 25 октября 2024 года пройдет VI Международная молодёжная школа «Инновационные ядерно-физические методы высокотехнологичной медицины».

Она продолжит цикл школ в рамках реализации проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов» при поддержке ФНТП «Развитие синхротронных и нейтронных исследований и исследовательской инфраструктуры» Минобрнауки России.

Организаторы:

  • Физический институт им. П.Н. Лебедева РАН;
  • Национальный медицинский исследовательский центр радиологии МЗ РФ;
  • Национальный исследовательский ядерный университет «МИФИ»;
  • НИЦ «Курчатовский институт».

Тема VI Школы – «Современные ядерно-физические методы диагностики».

На VI Школе акцент будет сделан на методах диагностики заболеваний (онкологических, кардиологических, неврологических и др.), базирующихся на ядерно-физических основах воздействия ионизирующих излучений, потоков заряженных частиц на объекты живой природы: компьютерная томография, позитрон-эмиссионная томография за счет положительного бета-распада, эмиссионная томография электронов отрицательного бета-распада, эмиссионная томография гамма-радиоактивными веществами. Программа рассчитана на молодых ученых, аспирантов, студентов магистратуры, специалитета и бакалавриата, школьников.

Формат: очный с возможностью дистанционного подключения для иногородних и иностранных участников.

Организационный взнос не предусмотрен.

Регистрация на сайте Школы: https://protonschool.lebedev.ru/

Вопросы организаторам: protonschool@lebedev.ru

Дополнительная информация в официальной группе ВКонтакте:  vk.com/school_lpi

https://www.atomic-energy.ru/news/2024/09/27/149742

27.09.24 27.09.2024 Российская академия наук. Президент РАН Геннадий Красников провёл сессию по 50-кубитному квантовому вычислителю на ионной платформе

Коллектив Физического института им. П.Н. Лебедева РАН (ФИАН) и Российского квантового центра в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является Госкорпорация «Росатом», создал 50-кубитный квантовый вычислитель на ионной платформе. Экспертную поддержку реализации дорожной карты оказала Российская академия наук. Глава РАН академик Геннадий Красников провёл специальную сессию на форуме «Микроэлектроника 2024», участники которой обсудили промежуточный итог деятельности по созданию квантовых вычислителей. Модератором сессии выступил академик РАН Александр Горбацевич.

«Россия показала результаты на четырёх платформах — сверхпроводниках, ионах, нейтральных атомах и фотонах. Мы следим за всем, что делается в мире по этому направлению. Ионная платформа обладает определёнными преимуществами, в числе которых полная связность системы», — сказал глава Академии наук, открывая сессию.

Директор по цифровизации Госкорпорации «Росатом» Екатерина Солнцева рассказала, что в 2019 году, когда стартовала работа над дорожной картой по квантовом вычислениям, наиболее активные споры велись именно о целесообразности развития ионной платформы, которая в то время не имела достаточной экспертизы и задела в России. «Рада, что в тот момент мы приняли правильное решение — работать над ионной платформой. Сегодня самый мощный квантовый компьютер России работает именно на ней», — отметила Екатерина Солнцева и поблагодарила коллектив ФИАНа и других участников проекта.

Впервые российский квантовый компьютер был представлен Президенту России Владимиру Путину на Форуме будущих технологий (ФБТ) в июле 2023 года. Это был 16-кубитный компьютер на ионах. На втором ФТБ в феврале того же года показали 20-кубитную машину. Менее чем за год российские учёные создали 50-кубитный ионный вычислитель. «Это очень высокая скорость развития. В мире существует не так много лабораторий, которые смогли пройти путь от нуля до 50-кубит за столь короткий срок», — сказала представитель «Росатома».

Она подчеркнула, что обсуждения дорожной карты на площадке Российской академии наук позволяли понимать, в правильном ли направлении движется работа.

Переходя к рабочей программе круглого стола, директор Физического института им. П.Н. Лебедева РАН член-корреспондент РАН Николай Колачевский рассказал о принципах работы многокубитных квантовых вычислителей на ионах и их потенциале в решении практических задач.

Основными платформами для квантовых вычислений являются сверхпроводники, атомы и ионы, отметил Николай Колачевский. «Россия относится к одной из немногих стран, где все платформы получили развитие с разной степенью успешности. Ионы на сегодняшний день опережают все другие платформы», — добавил он.

Ключевое свойство квантовых вычислителей — запутанность, «чем человечество ещё не до конца научилось пользоваться в алгоритмическом смысле», — подчеркнул директор ФИАН. Однако потенциал их использования обширен. Например, алгоритм Шора позволят раскладывать числа на простые множители, что имеет прямые применения в криптографии, а алгоритм Гровера осуществлять быстрый поиск по базам данных. Перспективными областями применения могут быть взлом классической криптографии, синтез новых химических лекарств, решение логистических задач, моделирование динамики сложных систем, машинное обучение и другое.

По мнению учёного, на горизонте 2030 года квантовые вычислители будут использоваться в качестве сопроцессора для решения специализированных задач, будут тестироваться коды коррекции ошибок и реализовываться логические кубиты, а лидеров квантовой гонки будут определять освоение и применение технологий микроэлектроники. Но при этом классические компьютеры они не заменят.

«Где-то несколько лет назад были иллюзии, что квантовые компьютеры заменят классические, и у нас будут квантовые телефоны в карманах. Скорее всего этого не произойдет, всё равно это будут некоторые сопроцессоры <…> Технологическая база, которую мы сможем освоить, будет определять реальное состояние железа», — сказал он.

Для повышения эффективности ионных платформ должны быть решены две задачи — увеличена скорость выполнения операций и решена проблема масштабирования, добавил Николай Колачевский.

Подробнее на работе 50-кубитного ионного квантового вычислителя и квантовых алгоритмах остановился научный сотрудник ФИАНа Илья Заливако.

Например, важным этапом перехода от 16-кубитноой системы к 50-кубитный стало решение проблемы считывания. «Раньше мы использовали системы из массива волокон, а теперь перешли к считыванию при помощи высокочувствительных камера. Немного ухудшилась скорость считывания и квантовая эффективность, однако такой подход более масштабируемым», — рассказал учёный.

В настоящий момент необходимо увеличивать число кубитов, точность операций, время когерентности, связность, а также оптимизировать вычислители и алгоритмы друг для друга, отметил Илья Заливако. «Наша основная цель — сделать квантовый компьютер, который мы сможем использовать для решения практически полезных задач», — добавил он.

Говоря о масштабировании, коллектив ФИАНа и Российского квантового центра планирует отработать технологии поверхностных ловушек, создать низковибрационные криостаты и отработать техники управления ионными кристаллами на чипе. Кроме того, активно ведутся работы по улучшению качества квантовых операций.

«За последние несколько лет мы на несколько порядков увеличили точность операций и ждём завершения следующей установки, чтобы продвинуться в этом направлении. Здесь мы работаем как с точки зрения улучшения квантовых операций, так и методик защиты кудитов от декогеренции, поиска эффективных способов кодирования информации», — сказал Илья Заливако.

Чтобы эффективно использовать квантовый компьютер, уже на этапе разработки необходимо думать о задачах, которые он мог бы решать, отметил докладчик: «Мы стараемся адаптировать наше железо под эти задачи, чтобы максимально эффективно расходовать ресурс».

Руководитель научной группы Российского квантового центра Алексей Фёдоров более подробно рассказал о квантовых алгоритмах, которые могли бы участвовать в решении прикладных задач.

Например, гибридный алгоритм квантового машинного обучения был использован для распознавания рукописных цифр и поиска аномалий в изображениях — рентгенах грудных клеток. Это тестовые задачи небольшого масштаба, с которыми может справиться квантовый процессор.

«Примерно год назад вместе с коллегами из Росатома мы начали большую работу по поиску задач в атомной отрасли, в которых могут быть полезны квантовые вычисления. Сегодня видим большой кластер задач, связанный с оптимизацией. Поэтому мы стараемся соотнести потребности для решения индустриальных задач с теми алгоритмами, которые мы разрабатываем и реализуем с помощью квантового железа», — сказал докладчик.

Важная часть работы в рамках дорожной карты связана с оптимизацией, подчеркнул Алексей Фёдоров. В настоящий момент область интереса разработчиков — гибридные системы для решения задач комбинаторной оптимизации. «Для решения задач большого масштаба нужна тесная связка классического и квантового программного обеспечения, чтобы выделять элементы, которые имеет смысл решать на квантовом компьютере, тогда как анализ всего остального набора данных происходит на классическом компьютере. Потом данные сшиваются и получается решение задачи. Мы видим в этом определённый тренд с точки зрения развития квантовых алгоритмов», — заключил учёный.

Круглый стол состоялся в рамках десятого форума «Микроэлектроника 2024», который проходит в эти дни на федеральной территории «Сириус». Юбилейное мероприятие проводится в преддверии нового профессионального праздника — Дня работника электронной промышленности, с инициативой установления которого к Правительству РФ обратился президент РАН академик Геннадий Красников.

https://new.ras.ru/activities/news/prezident-ran-gennadiy-krasnikov-provyel-sessiyu-po-50-kubitnomu-kvantovomu-vychislitelyu-na-ionnoy-/

27.09.24 27.09.2024 Наука и технологии. Росатом намерен вывести Россию в лидеры квантовых вычислений

Госкорпорация “Росатом” направила 12 миллиардов рублей на развитие квантовых вычислений в рамках реализации дорожной карты “Квантовые вычисления”, сообщает РИА Новости.

Общий объем финансирования проекта на 2020-2024 годы составил 24 миллиарда рублей, половину из которых вложил “Росатом” из собственных внебюджетных средств.

В рамках проекта создан 50-кубитный ионный квантовый компьютер, который на данный момент является самым мощным квантовым вычислителем в России. Работу над ним провели ученые Российского квантового центра и Физического института имени Лебедева РАН.

Директор по цифровизации “Росатома” Екатерина Солнцева отметила, что госкорпорация координирует и финансово поддерживает российский квантовый проект, используя многолетний научный и организационный опыт атомной отрасли.

Развитие квантовых вычислителей продолжится в рамках федерального проекта “Развитие перспективных технологий”. Планируется не только улучшать характеристики квантовых компьютеров, но и создавать условия для их практического применения в экономике.

Ожидается, что к 2030 году квантовые вычисления дополнят классические в решении ряда специфических задач, в том числе в квантовой химии и квантовом шифровании.

Эксперты прогнозируют широкое применение квантовых технологий в фармацевтике, медицине, транспорте, логистике, финансовом секторе и производстве. Квантовые вычисления также усилят возможности искусственного интеллекта.

https://sciencexxi.com/rosatom-nameren-vyvesti-rossiyu-v-lidery-kvantovyh-vychisleniy/

27.09.24 27.09.2024 Атомная Энергия 2.0. Росатом представил подробности создания самого мощного в РФ 50-кубитного ионного квантового компьютера

50-кубитный квантовый компьютер на ионах создан в России в 2024 году в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является Госкорпорация «Росатом». Работа проведена научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН).

Росатом осуществляет организационное управление российским квантовым проектом и паритетно с государством вносит собственные внебюджетные средства в достижение показателей дорожной карты: общий объём финансирования на 2020-2024 гг. составил 24 миллиарда рублей, из которых 12 млрд было вложено Росатомом. Экспертную поддержку реализации дорожной карты оказывает Российская академия наук.

Развитие высокопроизводительных российских квантовых вычислителей при координации Росатома будет продолжено в рамках в рамках федерального проекта «Развитие перспективных технологий» национальной программы «Экономика данных». При этом внимание будет уделено как развитию характеристик квантовых компьютеров, так и созданию условий для их практического применения в экономике и социальной сфере.

На данный момент универсальный квантовый вычислитель на ионной платформе с 50 кубитами является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу, с помощью которой могут быть запущены базовые квантовые алгоритмы.

Созданный квантовый компьютер базируется на уникальной кудитной технологии, которую российские ученые начали использовать третьими в мире, после Австрии и США.

Впервые российский квантовый компьютер был представлен президенту России Владимиру Путину в июле 2023 года на первом Форуме будущих технологий (ФБТ). Это был 16-кубитный компьютер на ионах. Уже на втором ФБТ в феврале 2023 года был продемонстрирован 20-кубитная машина. Менее чем за год, ученые увеличили количество кубитов более, чем два раза – до 50. Согласно дорожной карте, этот показатель должен быть достигнут до конца 2024 года – в данный момент ведется работа над улучшением качества работы квантовых операций и реализации квантовых алгоритмов.

Одной из приоритетных сфер применения квантовых вычислений в будущем станет фармацевтика и медицина в целом: появится возможность моделировать сложные молекулы при создании новых лекарств, а также получат развитие персонализированные медицинские технологии, позволяющие врачу в кратчайшие сроки разработать персональные рекомендации для лечения человека с учетом конкретных факторов его заболевания и особенностей организма. Также квантовые вычисления будут применяться для прогнозирования новых эпидемий.

Эксперты отмечают, что принципиально новые возможности моделирования молекул и химических процессов, которые появятся с применением квантового компьютера, дадут толчок развитию целого ряда индустрий, связанных с химической наукой. А в ИТ-сфере интеграция квантовых вычислений в индустриальное ПО позволит инженерам создавать более продвинутые технологии, например, в судостроении и авиапромышленности.

Важное направление применения «квантов» - транспорт и логистика. Составление оптимальных маршрутов и расписаний движения транспорта позволит решать проблемы пробок, а стихийно возникающие ограничения, например, из-за аварий, будут учитываться в режиме реального времени. Это приведёт к сокращению задержек в движении общественного транспорта и позволит автомобилистам тратить меньше времени на дорогу. В логистике применение квантовых вычислений облегчит, потенциально удешевит и ускорит доставку грузов по различным маршрутам.

В финансовом секторе квантовые вычисления необходимы для минимизации рисков и более точной оценки кредитоспособности организации или человека. А на производстве они помогут, к примеру, составлять оптимальный план выполнения заказов или обеспечивать организацию труда.

Квантовые технологии выведут на принципиально новый уровень возможности искусственного интеллекта – они усилят ИИ в части ускорения машинного обучения, распознавания и анализа изображений, речи и текста, обработки больших данных и т.д.  Кроме того, квантовые компьютеры смогут решать те же задачи эффективнее, быстрее, с меньшими энергозатратами.

В вопросах защиты персональных данных и обеспечения государственной безопасности необходимы технологии квантово-устойчивой защиты информации, в частности, постквантовое шифрование. Они обеспечат полностью конфиденциальный обмен данными, потому что попытки перехвата будут сразу же обнаружены участниками коммуникации.

По мнению специалистов, развитие российского квантового проекта приведет к возникновению в стране новых технологических направлений – подобно тому, как российский атомный проект создал целый ряд научно-технических школ и обозначил развитие уникальных исследовательских сфер.

Директор по цифровизации Госкорпорации «Росатом» Екатерина Солнцева:

«Росатом вошел в квантовую проблематику по поручению государства. И это неслучайно, развитие технологий будущего, в определенном смысле, историческая миссия Корпорации. Сегодня Росатом координирует и финансово поддерживает российский квантовый проект: мы используем 80-летний научный и организационный опыт атомной индустрии, помогая российским исследователям сделать рывок в сфере, которая обеспечит стране сильные технологические позиции на горизонте завтрашнего дня».

Директор Физического института имени П.Н. Лебедева РАН (ФИАН) Николай Колачевский:

«Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование».

Советник генерального директора Росатома, сооснователь Российского квантового центра Руслан Юнусов:

«50 кубитов - это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. В рамках следующей дорожной карты до 2030 года мы будем не только развивать науку и повышать производительность квантовых систем, но и займемся серьезной инженерной работой. Одна из знаковых задач - разработка первых образцов готовых к использованию квантовых компьютеров. Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу».

Источник: Цифровой блок Росатома

https://www.atomic-energy.ru/news/2024/09/27/149734

27.09.24 26.09.2024 Научная Россия. Созданный в России 50-кубитный квантовый вычислитель на ионной платформе обсудили на форуме «Микроэлектроника»

Созданный в России 50-кубитный квантовый вычислитель на ионной платформе обсудили на форуме «Микроэлектроника».
Фото: Анастасия Жукова / «Научная Россия»

Технологию 50-кубитного квантового вычислителя на ионной платформе, разработанную Физическим институтом им. П.Н. Лебедева РАН и Российским квантовым центром, обсудили участники специальной сессии десятого юбилейного форума «Микроэлектроника» 26 сентября. О значении и развитии технологии рассказали президент РАН академик Геннадий Яковлевич Красников и руководитель проекта от госкорпорации «Росатом», курирующей «дорожную карту» по развитию квантовых вычислений в России, Екатерина Борисовна Солнцева. В роли модератора мероприятия выступил доктор физико-математических наук, академик Александр Алексеевич Горбацевич.

Г.Я. Красников отметил, что в России ведутся исследования в области квантовых вычислений на четырех видах платформ.

«Одна из особенно интересных платформ — ионная. <…> Она обладает определенным преимуществом, так как с ее помощью можно создать бóльший квантовый объем за счет возможности запутывания большего количества кубитов», — сказал президент РАН. Г.Я. Красников обратил внимание на многолетние исследования ФИАН в области кукварков, которые открывают дополнительные возможности для дальнейшего совершенствования квантового вычислителя на ионной платформе.

«Когда мы готовили “дорожную карту” 2020–2024 гг. в 2019 г. <…>, основные “баталии” разворачивались как раз вокруг ионной платформы. Высказывались соображения относительно того, что у нас нет достаточно большой экспертизы, нет задела, поэтому разумно ли тратить силы и финансы на это направление. И сейчас я очень рада, что <…> сегодня самый мощный в России квантовый вычислитель работает именно на ионной платформе», — заметила Е.Б. Солнцева. Екатерина Борисовна обратила внимание на огромную работу, проделанную учеными в сжатые сроки, поблагодарив коллектив разработчиков технологии и Российскую академию наук, внесшую большой вклад в развитие проекта и регулярно участвовавшую в его обсуждениях.

Подробнее об особенностях прорывной технологии, ее испытаниях и возможностях применения платформы на сессии рассказали представители ФИАН и Российского квантового центра член-корреспондент РАН Н.Н. Колачевский, кандидат физико-математических наук И.В. Заливако и руководитель научной группы РКЦ «Квантовые информационные технологии» А.К. Федоров.

https://scientificrussia.ru/articles/sozdannyj-v-rossii-50-kubitnyj-kvantovyj-vycislitel-na-ionnoj-platforme-obsudili-na-forume-mikroelektronika

27.09.24 26.09.2024 Наука и жизнь. Учёные Российского квантового центра и Физического института им. П.Н. Лебедева РАН создали 50-кубитный квантовый компьютер

Разработка велась в рамках дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой выступает Госкорпорация «Росатом».

Работа проведена научной группой Российского квантового центра (РКЦ) и Физического института им. П.Н. Лебедева РАН (ФИАН). Экспертную поддержку реализации Дорожной карты оказывает Российская академия наук.

Квантовый вычислитель на ионной платформе с 50 кубитами. Фото: пресс-служба «Российского квантового центра».

На данный момент универсальный квантовый вычислитель на ионной платформе с 50 кубитами является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу, с помощью которой могут быть запущены базовые квантовые алгоритмы.

Созданный квантовый компьютер базируется на уникальной кудитной технологии, которую российские ученые начали использовать третьими в мире, после Австрии и США.

«Всего четыре года назад самым высоким показателем в стране были два кубита. Сегодня 50 кубитов это лучший результат, но не единственный – мы показали прототипы квантовых компьютеров на четырёх платформах, – сказал сооснователь Российского квантового центра Руслан Юнусов. – И это лишь первый шаг на пути к масштабному внедрению квантовых вычислений. В рамках дорожной карты до 2030 года мы займемся разработкой промышленных квантовых компьютеров».

Достижение 50-кубитного результата заняло у научной группы 4 года. Средний показатель продолжительности аналогичных исследований в мире составляет 15 лет. Таким образом, скорость развития российского квантового проекта является одной из самых высоких в мире.

«Все ключевые технологии для нашего квантового компьютера мы сделали сами. Также в нём довольно много оригинальных идей. Например, наша ионная ловушка выполнена из меди. Насколько мы знаем, ни в одной лаборатории в мире никто такого не делает, – отмечает один из разработчиков 50-кубитного квантового компьютера Илья Семериков, руководитель группы «Масштабируемые ионные квантовые вычисления» РКЦ, заведующий лабораторией «Распределённые квантовые технологии для решения задач машинного обучения» ФИАН. – У нас есть понимание, почему мы действуем так, а не иначе, что позволяет нам двигаться достаточно быстро. Также очень важно, что у нас есть свой технологический стек. Мы прототипируем все необходимые нам компоненты очень быстро, а течение недель или месяцев. Это позволяет нам не сбавлять темп».

Росатом осуществляет организационное управление российским квантовым проектом и паритетно с государством вносит собственные внебюджетные средства в достижение показателей дорожной карты: общий объём финансирования на 2020-2024 гг. составляет 24 млрд рублей.

Развитие высокопроизводительных российских квантовых вычислителей при координации Росатома будет продолжено в рамках федерального проекта «Развитие перспективных технологий» национальной программы «Экономика данных». При этом внимание будет уделено как развитию характеристик квантовых компьютеров, так и созданию условий для их практического применения в экономике страны.

Источник: Пресс-служба «Российского квантового центра»

https://www.nkj.ru/prtnews/51067/

27.09.24 26.09.2024 Научная Россия. К 2030 г. квантовые компьютеры будут использоваться для решения практических задач

К 2030 г. квантовые компьютеры будут использоваться для решения практических задач. Но они не заменят классические компьютеры, а, скорее, будут использоваться в режиме сопроцессоров. Так считает директор Физического института им. П.Н. Лебедева РАН Николай Колачевский. Ученый выступил с докладом о многокубитных квантовых вычислителях на ионах для решения практически значимых задач на форуме «Микроэлектроника-2024», который проходит 23-27 сентября.

По словам ученого, речи о квантовом превосходстве пока не идет. Важнее практическая значимость квантовых компьютеров: возможно ли с их помощью эффективно решить практически значимый алгоритм. Перспективными областями применения могут быть синтез новых химических соединений, решение задач логистики, моделирование ранее недоступных физических процессов, машинное обучение. При этом применять квантовые технологии для этих целей, возможно, получится в течение десятилетия.

«На горизонте 2030 г. квантовые компьютеры будут использоваться для решения практически значимых задач. Несколько лет назад была иллюзия, что квантовые компьютеры заменят классические, а у нас в карманах появятся квантовые телефоны. Скорее всего, этого не произойдет. Производительность классических компьютеров тоже увеличивается, опережения не случится и квантовые технологии, скорее всего, будут использоваться в режиме сопроцессоров для выполнения определенных операций», ― сказал Николай Колачевский.

Ученый добавил, что лидеров квантовой гонки будет определять освоение и применение технологий микроэлектроники, которые важны для всех платформ. Технологическая база, которую российские ученые смогут освоить, в большой степени будет определять реальное состояние «железа».

Ведущий научный сотрудник ФИАН Илья Заливако отметил, что основная цель работы ― это создание квантового компьютера, который возможно продуктивно использовать для решения  задач. Для этого необходимо увеличивать количество кубитов, увеличивать точность операций, а также оптимизировать вычислители и алгоритмы друг для друга.

«Когда мы разрабатываем квантовое “железо” мы не должны очень далеко отходить от приложения: как же мы в перспективе собираемся его использовать. Поэтому нам важно работать близко с теоретическими подгруппами, чтобы понимать, как мы можем оптимизировать наше “железо”, и наиболее эффективно использовать ресурсы», ―сказал Илья Заливако.

https://scientificrussia.ru/articles/k-2030-g-kvantovye-komputery-budut-ispolzovatsa-dla-resenia-prakticeskih-zadac

26.09.24 26.09.2024 РИА Новости. Росатом направил 12 млрд рублей на развитие квантовых вычислений

МОСКВА, 26 сен – РИА Новости. Росатом отвечает за реализацию дорожной карты "Квантовые вычисления", в рамках которой создан 50-кубитный ионный квантовый компьютер, и паритетно с государством вкладывает собственные внебюджетные средства. Общий объем финансирования на 2020-2024 годы составил 24 миллиарда рублей, из которых 12 млрд было вложено Росатомом, сообщает пресс-служба госкорпорации.
 
Работа по созданию 50-кубитного квантового компьютера на ионах проведена научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН).
 
"Росатом вошел в квантовую проблематику по поручению государства. И это неслучайно, развитие технологий будущего, в определенном смысле, историческая миссия Корпорации. Сегодня Росатом координирует и финансово поддерживает российский квантовый проект: мы используем 80-летний научный и организационный опыт атомной индустрии, помогая российским исследователям сделать рывок в сфере, которая обеспечит стране сильные технологические позиции на горизонте завтрашнего дня", - сказала директор по цифровизации Госкорпорации "Росатом" Екатерина Солнцева.
 
Развитие высокопроизводительных российских квантовых вычислителей при координации Росатома будет продолжено в рамках федерального проекта "Развитие перспективных технологий" национальной программы "Экономика данных". При этом внимание будет уделено как развитию характеристик квантовых компьютеров, так и созданию условий для их практического применения в экономике и социальной сфере.
 
На данный момент универсальный квантовый вычислитель на ионной платформе с 50 кубитами является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу, с помощью которой могут быть запущены базовые квантовые алгоритмы.
 
"Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование", - приводятся в сообщении слова директора Физического института имени П.Н. Лебедева РАН (ФИАН) Николая Колачевского.
 
Созданный квантовый компьютер базируется на уникальной кудитной технологии, которую российские ученые начали использовать третьими в мире, после Австрии и США.
 
Впервые российский квантовый компьютер был представлен президенту России Владимиру Путину в июле 2023 года на первом Форуме будущих технологий (ФБТ). Это был 16-кубитный компьютер на ионах. Уже на втором ФБТ в феврале 2024 года была продемонстрирована20-кубитная машина. Менее чем за год ученые увеличили количество кубитов более чем в два раза – до 50. Согласно дорожной карте, этот показатель должен быть достигнут до конца 2024 года – в данный момент ведется работа над улучшением качества работы квантовых операций и реализации квантовых алгоритмов.
 
Одной из приоритетных сфер применения квантовых вычислений в будущем станет фармацевтика и медицина в целом: появится возможность моделировать сложные молекулы при создании новых лекарств, а также получат развитие персонализированные медицинские технологии, позволяющие врачу в кратчайшие сроки разработать персональные рекомендации для лечения человека с учетом конкретных факторов его заболевания и особенностей организма. Также квантовые вычисления будут применяться для прогнозирования новых эпидемий.
 
"Эксперты отмечают, что принципиально новые возможности моделирования молекул и химических процессов, которые появятся с применением квантового компьютера, дадут толчок развитию целого ряда индустрий, связанных с химической наукой. А в ИТ-сфере интеграция квантовых вычислений в индустриальное ПО позволит инженерам создавать более продвинутые технологии, например, в судостроении и авиапромышленности", - говорится в сообщении.
 
Важное направление применения "квантов" - транспорт и логистика. Составление оптимальных маршрутов и расписаний движения транспорта позволит решать проблемы пробок, а стихийно возникающие ограничения, например, из-за аварий, будут учитываться в режиме реального времени. Это приведет к сокращению задержек в движении общественного транспорта и позволит автомобилистам тратить меньше времени на дорогу. В логистике применение квантовых вычислений облегчит, потенциально удешевит и ускорит доставку грузов по различным маршрутам.
 
В финансовом секторе квантовые вычисления необходимы для минимизации рисков и более точной оценки кредитоспособности организации или человека. А на производстве они помогут, к примеру, составлять оптимальный план выполнения заказов или обеспечивать организацию труда.
 
Квантовые технологии выведут на принципиально новый уровень возможности искусственного интеллекта – они усилят ИИ в части ускорения машинного обучения, распознавания и анализа изображений, речи и текста, обработки больших данных и т.д. Кроме того, квантовые компьютеры смогут решать те же задачи эффективнее, быстрее, с меньшими энергозатратами.
 
"50 кубитов — это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. В рамках следующей дорожной карты до 2030 года мы будем не только развивать науку и повышать производительность квантовых систем, но и займемся серьезной инженерной работой. Одна из знаковых задач - разработка первых образцов готовых к использованию квантовых компьютеров. Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу", - отметил советник генерального директора Росатома, сооснователь Российского квантового центра Руслан Юнусов.

https://ria.ru/20240926/rosatom-1974901635.html

26.09.24 26.09.2024 Российская академия наук. Открылась выставка «Нобелевские лауреаты ФИАН»

В Библиотеке по естественным наукам РАН (Москва) состоялось открытие выставки, посвящённой фиановцам — лауреатам Нобелевской премии.

Выставка «300 лет Российской академии наук: Нобелевские лауреаты ФИАН» рассчитана на широкую аудиторию, в том числе на школьников и студентов, и может быть интересна всем, кого привлекает наука и история отечественной науки.

Экспозиция выставки посвящена П.А. Черенкову, И.М. Франку, И.Е. Тамму, Н.Г. Басову, А.М. Прохорову, А.Д. Сахарову и В.Л. Гинзбургу, нобелевским лауреатам, работавшим в Физическом институте Академии наук в разные годы.

Выставка проходит до 23 декабря 2024 года.

Источник: пресс-служба ФИАН.

https://new.ras.ru/activities/news/otkrylas-vystavka-nobelevskie-laureaty-fian/

26.09.24 25.09.2024 Научная Россия. Выставка «300 лет Российской академии наук: Нобелевские лауреаты ФИАН» открылась в Москве

В Москве состоялось открытие выставки, посвященной фиановцам – лауреатам Нобелевской премии.



Выставка «300 лет Российской академии наук: Нобелевские лауреаты ФИАН» рассчитана на широкую аудиторию, в том числе на школьников и студентов, а также может быть интересна всем, кого привлекает наука и история отечественной науки.

Экспозиция выставки посвящена П.А. Черенкову, И.М. Франку, И.Е. Тамму, Н.Г. Басову, А.М. Прохорову, А.Д. Сахарову и В.Л. Гинзбургу, нобелевским лауреатам – ученым, работавшим в ФИАН в разные годы.

Мероприятие проходит в БЕН РАН и продлится до 23 декабря 2024 года.

Информация и фото предоставлены Отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/vystavka-300-let-rossijskoj-akademii-nauk-nobelevskie-laureaty-fian-otkrylas-v-moskve

Подкатегории