СМИ о нас

06.02.24 06.02.2024 Научная Россия. Как найти «кротовые норы» в космосе – новаторский подход российских ученых

Фундаментальный прорыв в изучении черных дыр и джетов сделали российские ученые. Их разработки помогут астрофизикам отыскать в космосе такие гипотетические объекты, как «кротовые норы» (или «червоточины») и кварковые звезды.

Изображение релятивистского джета в галактике М87, полученное с помощью наземно-космического интерферометра Радиоастрон на частоте 1668 МГц

Исследователи из Физического института им. П.Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Крымской астрофизической обсерватории предложили новое понимание природы джетов – струй плазмы, которые на скорости, близкой к световой, вырываются из сверхмассивных черных дыр в центре некоторых галактик. Статья с результатами исследований опубликована в журнале Monthly Notices of Royal Astronomical Society.

По современным представлениям, джеты образуются, когда вещество из звезд или газовых облаков устремляется в гравитационную яму сверхмассивной черной дыры в центре галактики. При этом материя образует дискообразную структуру – так называемый аккреционный диск. Взаимодействие этой массы и магнитного поля черной дыры порождает мощный выброс, который в виде узкой струи устремляется в космос. Длина такого выброса достигает сотен и тысяч световых лет.

Московские и крымские ученые на основе наблюдений, сделанных современными космическими телескопами, предложили новаторский подход к определению физических параметров, определяющих активность этих объектов. Причем оказалось, что выдвинутая гипотеза хорошо сочетается с другими знаниями об этих космических объектах и укладывается в математические уравнения.

«Раньше предполагали, что джет имеет коническую форму, расширяясь по мере удаления от своего ядра — основания. Причем считалось, что плазма в джете разогнана в начале до максимальной скорости и на всем его протяжении распространяется равномерно. Однако ранее мы показали, что, наоборот, джет имеет форму параболы, а вещество в нем не движется равномерно, а разгоняется на каждом этапе пути. Эти данные существенно противоречат общепринятому методу оценки магнитного поля в джетах. В нашей новой работе мы предложили такой метод определения магнитного поля в джетах, который согласован с новой картиной формы джетов и ускорения плазмы в них. Хотя этот метод требует больше наблюдательных данных, он позволяет легко экстраполировать величину поля с парсековых масштабов на масштабы гравитационного радиуса, то есть заглядывать в самое сердце активной машины», — объяснила суть новых предположений Елена Нохрина, старший научный сотрудник Лаборатории проблем физики космоса ФИАН, заведующая лабораторией фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ.

Она отметила, что новые данные позволили усовершенствовать способ, который астрофизики прежде использовали для расчета свойств джетов – так называемый метод сдвига ядра. Он заключается в том, что основание джета, если смотреть на него в радиодиапазоне, как правило, смещено от своего истинного положения.

При этом, в зависимости от частоты радиоволн, это видимое местонахождение меняется. В результате новаторская модель джета, заложенная в традиционную методику расчета, позволила ученым с высокой точностью определить энергию магнитного поля ряда сверхмассивных черных дыр, из которых вырываются джеты.

Для примера ученые приложили свое понимание природы джета к галактике М87 и квазару NGC 315. Эти объекты хорошо изучены в ходе реализации международного проекта Телескопа горизонта событий и по данным наблюдений на других интерферометрах со сверхдлинными базами. Сделанные расчеты показали, что новая теория хорошо сочетается с прежде известными данными.

Как считают авторы научной работы, предложенная модель не только поможет в изучении сверхмассивных черных дыр и их джетов, но также даст возможность открыть новые экзотические объекты, которые в настоящее время существуют в виде гипотез.

 «В частности, известно, что скопления вещества в аккреционном диске вокруг черной дыры не могут образовать магнитные поля с энергией более 104 Гс (гаусс). Значит, усовершенствованный нами метод сдвига можно использовать как индикатор. Если мы зафиксируем объекты с энергией магнитного поля, которая превышает этот уровень, то можем предположить наличие новых, неизвестных прежде форм пространства-времени», – пояснила Елена Нохрина.

Например, считает ученый, благодаря более точному пониманию природы джета астрофизики получат новый инструмент для поиска в космосе таких высокоэнергетических объектов, как «кротовые норы», или, как их называют за рубежом, «червоточины». Это гипотетические «тоннели», которые из-за неравномерности пространства-времени могут напрямую соединять удаленные точки Вселенной.

Другой тип объектов, неизвестных науке, которые можно обнаружить, используя предложенные модели, – это кварковые звезды. Так астрофизики называют гипотетические массивы в космосе, которые состоят не из атомов, а из кварков – самых элементарных «кирпичиков» материи.

В ближайшей перспективе новая модель джетов может быть полезна при подготовке научной программы российской космической обсерватории «Спектр-М», запуск которой запланирован в начале 2030 годов. Одна из задач этой миссии – поиск «кротовых нор» в квазарах.

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/ucenye-predlozili-sposob-kak-najti-cervotociny-v-kosmose

06.02.24 06.02.2024 Гайская новь. Школьники и студенты Гайского округа поговорили о науке
В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Подробнее читайте на сайте Гайская Новь https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/
В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Подробнее читайте на сайте Гайская Новь https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/

В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Школьникам, студентам техникумов и колледжей региона рассказали о научном потенциале России, достижениях ученых страны. Так, ребята с интересом слушали историю об открытии ученым Д.И. Менделеевым периодического закона, являющегося одним из фундаментальных законов природы. В этом году исполняется 190 лет со дня рождения известного русского химика.

Федеральным спикером мероприятия стал научный сотрудник Физического института им. П.Н. Лебедева Российской академии наук Илья Семериков – один из разработчиков квантового компьютера.

В Оренбургской области благодаря национальному проекту «Образование» созданы условия для развития исследовательских способностей детей. Открыты инновационные площадки в школах и организациях среднего профессионального образования – детские технопарки «Кванториум», центры образования «Точка роста», «IT-кубы», мастерские центра выявления и поддержки одаренных детей «Гагарин». Здесь школьников знакомят с азами научных исследований и экспериментов, которые помогут им в дальнейшей научно-исследовательской деятельности.

8 февраля, в День российской науки, в детском технопарке «Кванториум» юные исследователи защитят свои первые научные проекты.

День российской науки приурочен к дате основания Петербургской академии наук, учрежденной по повелению императора Петра I указом Сената от 8 февраля 1724 года. В 2024 году Российская академия наук празднует свое 300-летие.

https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/

06.02.24 05.02.2024 ФедералПресс. Школьникам рассказали о важности научных открытий и работе ученого

МОСКВА, 5 февраля, ФедералПресс. Традиционное внеурочное занятие «Разговоры о важном», которое прошло в понедельник в школах и колледжах страны, было посвящено Дню российской науки и 190-летию со Дня рождения выдающегося химика Дмитрия Ивановича Менделеева.

Почетным гостем урока стал научный сотрудник Физического института имени Лебедева Российской академии наук, а также один из разработчиков квантового компьютера Илья Семериков.

«Работа ученых очень разнообразна и даже разные области очень по-разному устроены. На самом деле наука очень широкая и большая часть работы ученого это исследования и работа над ними», – отметил Илья Семериков.

Он также рассказал ребятам, как ученые делают открытия, чем квантовый компьютер отличается от обычного и доступен ли он современным школьникам и студентам, а также поделился секретами, как сделать свое первое открытие.

Продолжая занятие, старшие наставники помогли школьникам и студентам сделать вывод, что наука помогает понимать мир вокруг, исследовать новые технологии и находить решения для сложных задач, избавляя от болезней, помогая бороться с изменением климата, выстраивать энергетическую безопасность, делая жизнь человека удобнее.

Ранее на уроке «Разговоры о важном» студентам и школьникам рассказали об освобождении Ленинграда, 80-летие которого отметили в 2024 году. Ребята узнали, какой ценой жителям города досталась победа.

https://fedpress.ru/news/77/society/3296862

06.02.24 05.02.2024 Газета.Ru. Российским школьникам рассказали об истории отечественной науки

День российской науки стал темой традиционных уроков «Разговоры о важном», прошедших по всей стране. Российским школьникам рассказали о жизни и работе выдающегося химика Дмитрия Менделеева и мероприятиях, которые приурочены к 190-летию со дня рождения ученого. Об этом сообщается на сайте проекта.

Школьникам объяснили, что цель науки — узнать что-то новое об окружающем мире и использовать эти знания на благо людей.

Героем подготовленного к уроку ролика стал научный сотрудник Физического института имени Лебедева Российской академии наук, один из разработчиков квантового компьютера Илья Семериков.

«Работа ученых очень разнообразна и даже разные области очень по-разному устроены. На самом деле наука — очень широкая, и большая часть работы ученого — это исследования, работа над ними», — поделился Семериков.

Ученый рассказал, как происходят открытия и чем квантовый компьютер отличается от обычного.

Педагоги в ходе диалога со школьниками пришли к выводу, что наука помогает понимать мир вокруг, исследовать новые технологии и находить решения для сложных задач, избавляя от болезней, помогая бороться с изменением климата, выстраивать энергетическую безопасность, делая жизнь человека удобнее.

Напомним, занятия «Разговоры о важном» еженедельно проводятся в российских школах и профессиональных образовательных организациях в рамках внеурочной деятельности с сентября 2022 года.

Проект направлен на сохранение исторической памяти и преемственности поколений, развитие ценностного отношения обучающихся к России, ее истории, природе и культуре.

https://www.gazeta.ru/social/news/2024/02/05/22267051.shtml

06.02.24 02.02.2024 ТроицкИнформ. Взгляд в прошлое

Чёрно-белые фотографии лежат россыпью. На них – дети, давно ставшие взрослыми, и люди, которые сидят сейчас за одним столом. Все они долгое время работали в детских садах сначала Академгородка, а потом уже и Троицка. Педагогический стаж каждого из этих специалистов составляет больше 30 лет. Их так и называют – ветераны педагогического труда. Встреча прошла в рамках проекта «Троицкие летописи».

Судьба каждого из этих людей тесно переплетается с историей Троицка. Тамара Фокина переехала в Академгородок в 1969 году. Она возглавила детский сад №37, который находился в ведомстве ИЗМИРАНа. Позже Фокину пригласили в новый детский сад №33, расположенный в микрорайоне «В» (сей-
час – 7-е дошкольное отделение Гимназии Троицка), его строил и открывал ФИАН, а потом Фокина стала заведующей детского сада №1 (сейчас – 1-е отделение Лицея). «Ещё в 37-м детском саду сложился очень дружный коллектив, – вспоминает Тамара Фокина. – И это близкое, родное отношение я пронесла через все последующие места работы».

Осенью 1973 года в детский сад №33 пришла работать выпускница пединститута им. Ленина Евгения Левченко. «Ходил только 531-й
автобус, – вспоминает Евгения. – Я доехала до остановки «40-й километр». Шла на встречу к Тамаре Харлампьевне вдоль ИФВД, у забора росли молодые ёлочки. Было так тихо и уютно, что я подумала: «Как же здесь хорошо растить детей!» Хотя своей семьи у меня ещё не было».

Вместе с Тамарой Фокиной методист Евгения Левченко открывала детский сад №33. «Родители были очень отзывчивые, – рассказывает Левченко. – Помогали оборудовать площадки, участвовали в субботниках, отмывали группы после ремонта». В жизни дошкольных учреждений Академгородка активно участвовали научные институты: ИЗМИРАН, ФИАН, ИФВД, ИСАН. Нужно было всё, начиная от забора и спортивного инвентаря и заканчивая шторами в группы.

В 1977 году к троицкому педагогическому сообществу присоединилась Вера Макарова. Окончив институт культуры, она стала работать в 46-м детском саду на улице Лесной (сейчас – 5-е дошкольное отделение Лицея Троицка) музыкальным руководителем. «Мы придумывали сюжеты для праздников, – вспоминает Макарова. – При нас на телевидении начались «Голубые огоньки», так мы утренники стали проводить по схожему сценарию. И участвовали у нас не только дети, но и родители. Мамы и папы даже стихи сами сочиняли!»

В это же дошкольное учреждение, но уже в конце 1980-х, после реконструкции, пришла работать музыкальным руководителем Ольга Кутякова. Детский сад №5 или «Теремок», как он стал называться, находился в ведении «Магнитки» (сейчас ГРЦ РФ ТРИНИТИ). «Детский сад не только отремонтировали, но и достроили эстетический блок, – рассказывает Кутякова. – Это была такая новинка в Троицке! У нас всё было особенное: бассейн больше, му-
зыкальный зал – просторней. Физкультурный зал располагался отдельно. В художественной студии чего только не было: керамика, вазы, краски и мольберты… Сделали даже компьютерный класс. Приходили из «Магнитки», обучали воспитателей работать на компьютерах!» Ольга Кутякова пела в Троицком камерном хоре. И в разные годы в роли Деда Мороза выступали руководитель коллектива Алексей Малый и солисты Сергей Коневских и Алексей Шаулов.

Татьяна Жукова начала карьеру в Троицке в 1979 году в старом фабричном детском саду, который располагался около нынешнего мемориала с Вечным огнём. Сад был для детей работников фабрики, небольшой, всего на 6 групп, одна из которых – ночная. «Горячей воды не было, дети спали на раскладушках: их ставили каждый раз перед сном, – вспоминает Жукова. – Ясли находились в отдельном здании на другой улице». Через год Татьяна ушла в декрет, а вышла в 1981-м уже в детский сад №1, где была заведующей Тамара Фокина. «Не хватало пособий, так мы их сами делали, – рассказывает Жукова. – Сколько мы вырезали из картона треугольничков, квадратиков, грибочков! Красили, покрывали лаком…»

Дошкольников приучали к труду. «Коллективный труд был по пятницам, – поясняет Жукова. – Фартучки надевали, протирали каждый кубик, шкафы, тряпочки выжимали… Ждали этого дня, спрашивали: когда мы будем убираться? На огороде копали, сажали, поливали, пололи. А когда песок привозили, это было просто «на ура»! Кто на носилках, кто в ведёрках, даже в формочках носили! Родители вечером приходили и подключались к процессу. В те годы мы все замечательно, дружно жили». В дошкольном учреждении, в котором работали Тамара Фокина и Татьяна Жукова, позже расположилась начальная школа. А воспоминания о работе в детском саду остались, в том числе и в чёрно-белых фотографиях.

Наталья МАЙ, фото Александра КОРНЕЕВА

https://троицкинформ.москва/vzglyad-v-proshloe/

06.02.24 02.02.2024 Новые округа. Проверять и не верить

Самые серьезные люди нашей страны 8 февраля отметят свой главный праздник. Это ученые. Те, которые каждый день отвечают на десятки умнейших вопросов, в силу профессии, конечно. «НО» в честь приближающегося Дня науки решили задать ученым вопросы попроще и понаивнее — те, которые наши читатели присылали нам на почту. А ответ перед читателями держит руководитель ТОП ФИАН, завкафедрой МПГУ, член-корреспондент Российской академии наук Андрей Наумов (на фото).

На фото руководитель ТОП ФИАН, завкафедрой МПГУ, член-корреспондент Российской академии наук Андрей Наумов

Андрей Витальевич, один из самых популярных вопросов: как запомнить все, что вы знаете?

На этот вопрос я отвечу словами нейрофизиолога Татьяны Черниговской. Она выделила несколько правил для эффективной работы мозга. Первое — человек должен постоянно учиться. Второе — важно изучать иностранные языки. Это задействует все зоны головного мозга. Третье, неочевидное, но по себе знаю — очень полезное: игра на музыкальных инструментах. Когда задействованы сразу обе руки — активируются левое и правое полушария головного мозга. И четвертое, особенно важное! Обязательно нужно читать длинные и сложные художественные тексты. Именно это помогает активировать те зоны головного мозга, которые нужны ученым! К сожалению, сейчас читают единицы. Виной всему — появление смартфонов. Поглощая быструю информацию, человек перестает думать, анализировать, представлять. И это огромная проблема! По этой причине, кстати, многие известные люди, такие как Билл Гейтс, например, до 18 лет вообще не дают своим детям в руки телефоны.

А вы поступили так же?

Мы стараемся! Моя младшая дочь, третьеклассница, одна из немногих из ее окружения не пользуется смартфоном! Оттягиваем покупку, чтобы больше времени оставалось на чтение, музыку, учебу.

Одна наша читательница решила узнать: насколько проще ученым живется в современном мире. То есть легче ли им в быту...

Конечно! Из банального: не так давно у меня дома перестала греть батарея. Мастера вызывать? Зачем! Представляя, как циркулирует вода, как все устроено — разобрался и все починил сам. Или вот — пару месяцев назад пошел в мастерскую сдавать планшет в ремонт. Назвали огромную сумму за такую услугу. Я стал задавать наводящие вопросы и увидел, как специалист «поплыл», потому что просто хотел побольше заработать.

Что делают ученые на работе каждый день, если открытия они совершают редко?

Работают, конечно! Но если без шуток, то каждое открытие начинается с идеи. Это сложный этап. Спонтанный. Вспомните Архимеда, который в воду залез, и ему идея пришла в голову... Примерно так внезапно все и происходит. Потом начинается проверка идеи. Может быть, теоретическая, а может — экспериментальная. Тогда работы еще больше. В том числе нужно оборудование настроить — это иногда процесс не пяти минут. К примеру: у нас в Троицком ФИАНе есть уникальный ускоритель заряженных частиц — синхротрон (на нем еще нобелевский лауреат академик Черенков работал). Так коллеги иногда несколько месяцев его подготавливают к работе! Но и это еще далеко не все. Многие ученые занимаются численным моделированием на компьютере. Пытаются смоделировать ситуации, которые просчитать нельзя. Например, что будет с нашим климатом. На все перечисленное уходят месяцы, а может быть, и годы... Но при этом нет никакой гарантии, что что-то получится. Все результаты, в том числе отрицательные, надо фиксировать и записывать, чтобы представить общественности.

То есть необязательно научные открытия делаются с какой-то целью?

Совсем нет! Никто из нас никогда не знает, когда результат его работы пригодится. Ученый может выявить какую-то закономерность, описать ее и «положить» на полку. А через 50 лет она, например, поможет другому открытию.

Есть такое мнение, что ученые — это люди, которые ответят на любой вопрос. Но есть ли такие вопросы, на которые не найдется ответов?

Даже если и так, ученый выслушает вопрос. Возьмет паузу. А потом предложит ответ со своими доказательствами. Такие вот люди, эти ученые. Но на самом деле, я думаю, у меня и коллег вряд ли найдутся ответы на вопросы, связанные с человеческими взаимоотношениями: что такое любовь, дружба, душа и есть ли она... Наверное, если бы на это у нас нашлись ответы, было бы даже страшновато. Ну вот как представить любовь в виде формулы? Поэтому эти вопросы к психологам. Но психология — это наука!

Правда, что ученые не верят в мистику и все то, что таким можно назвать?

Знаете, я как-то слышал спор двух коллег. Один говорил, что поверит в высший разум, если ему представят все доказательства, как в науке это и положено. А другой говорил, что ни за что не поверит, даже если будет тысяча доказательств! Так что да, в мистику ученые не верят. Нет, все мы люди разные. Но уж точно они найдут объяснение того или иного явления. И в приметы мы не верим, и в астрологию, и в нумерологию. Такая у нас работа: все тщательно проверять и на слово не верить.

https://nov-okruga.ru/proveryat-i-ne-verit/

21.01.24 18.01.2024 TechInsider. «Атомная бомба XXI века»: ученые объясняют технологию создания квантового компьютера

Такая машина идеальна для решения криптографических задач, она способна достаточно быстро взламывать военные серверы и компьютерные сети, вскрывать защищенные каналы связи, лишая армию управления, – не говоря уже о проникновении в банковские сети и прочие гражданские компьютерные системы. Обладание соответствующими технологиями – вопрос выживания государства.

Но квантовые компьютеры нужны не только для военных целей – они необходимы для решения задач в области квантовой химии, оптимизации финансового моделирования, обучения искусственного интеллекта. С помощью квантовых алгоритмов можно рассчитывать параметры сложных молекул, лекарств, новейших материалов – например, для авиастроения.

Если продолжить сравнение квантовой машины с атомной бомбой, то следует вспомнить, что при общем названии вариантов таких бомб было множество и они сильно различались между собой. Например, бомба, сброшенная на Хиросиму, была сделана по пушечной схеме из высокообогащенного урана, а сброшенная на Нагасаки – по имплозивной схеме с обжатием плутония сферической сходящейся ударной волной. Точно так же сейчас – при едином принципе работы – существует несколько концепций построения квантового компьютера. Главные технологии, на которых сосредоточены все усилия, – это ионные ловушки, нейтральные атомы, фотоны и сверхпроводящие кубиты. Никто точно не знает, какая из технологий в итоге «выстрелит», поэтому развивать приходится все. Пока мы, как и с отечественным атомным проектом, по некоторым направлениям отстаем от стран – лидеров квантовой гонки на три-пять лет, но уже постепенно нагоняем конкурентов.

Ближе всех к цели подошла группа Николая Колачевского из совместной лаборатории Физического института им. П. Н. Лебедева (ФИАН) и Российского квантового центра (РКЦ), занимающаяся квантовыми компьютерами на ионах. Мы поговорили о работе над этим проектом с заместителем руководителя научной группы Ильей Семериковым.

widget-interest

Выпускнику МФТИ Илье Семерикову всего 31 год, но он возглавляет одно из важнейших направлений квантовой физики и входит в первую десятку ученых, которые двигали отечественную науку в этом году.

Пара носков

В традиционных компьютерах единицей информации является бит, а в квантовых – кубит. В отличие от традиционного бита кубит в квантовом мире не обязан быть в одном состоянии: он может быть в любой комбинации из них – в квантовой механике это называется суперпозицией. Четыре классических бинарных бита имеют 24 конфигураций в одном из 16 состояний. А четыре кубита могут быть одновременно во всех 16 состояниях. Чтобы описать состояние системы из четырех кубит, нужно 16 чисел. И это количество возрастает экспоненциально с каждым новым кубитом. Так, для описания 20 кубитов уже понадобится хранить около миллиона значений одновременно, а для 300 потребуется больше чисел, чем атомов во Вселенной.

Еще одно странное свойство кубитов – запутанность: каждый запутанный кубит мгновенно реагирует на изменение состояния другого кубита, как бы далеко друг от друга они ни находились. Измерив один запутанный кубит, мы можем узнать состояние другого, связанного с ним. Чтобы объяснить это явление людям, незнакомым с квантовой физикой, обычно используют сравнение с носками. Представьте, что у вас есть пара квантово связанных носков, разнесенная по разным континентам. Тогда если на одном континенте кто-то наденет носок на правую ногу, то на другом континенте второй носок мгновенно окажется на левой.

 

 

Оптический стол – главный рабочий инструмент квантовых оптиков. Вот сейчас вы видите небольшую часть лазерной системы, которая охлаждает ионы до самых низких во всей Вселенной температур.
Оптический стол – главный рабочий инструмент квантовых оптиков. Вот сейчас вы видите небольшую часть лазерной системы, которая охлаждает ионы до самых низких во всей Вселенной температур. ПАО "Туполев"

 

Не кубитом единым

Квантовый компьютер Ильи Семерикова расположен в подвальном помещении ФИАН на Ленинском проспекте и напоминает нагромождение лазеров, линз и камер – в общем, классическую лабораторную установку из мира квантовой оптики. На черном фоне монитора выстроились в одну линию 10 светящихся белых точек – это и есть связанные ионы. Прогресс в области квантовых технологий ошеломляющий. Когда я договаривался с Ильей о встрече, у него был 16-кубитный квантовый компьютер, а когда доехал – уже 20-кубитный.

На мониторе работа квантового компьютера на ионах выглядит как цепочка из 10 висящих в вакууме светящихся точек. Но за этими точками стоят невероятно сложные технологии.
На мониторе работа квантового компьютера на ионах выглядит как цепочка из 10 висящих в вакууме светящихся точек. Но за этими точками стоят невероятно сложные технологии.
freepic
 

Когда речь заходит о квантовых вычислениях, люди прежде всего смотрят на число кубит, потому что это понятная метрика. Тут работает обратная связь: ученые понимают, что успешность их работы оценивают по количеству кубит, и начинают это количество увеличивать: в США так делают, чтобы понравиться инвесторам, в России – правительству, в Китае – партии. Но на самом деле важна комбинация параметров. Нельзя сказать, что число кубит – какая-то бессмыслица, нет, это действительно одна из главных характеристик. Но не менее значимо качество операций.

Квантовые вентили делятся на два вида: одно- и двухкубитные. Однокубитные операции «дешевые»: у них маленькая ошибка. Ошибки в вычислениях независимые, поэтому, если последовательно проводить несколько операций, они складываются. И можно посмотреть, сколько сотен операций удастся провести, прежде чем ошибка станет больше 50%.

Второй существенный параметр – достоверность двухкубитных операций на массиве.

«У нас сейчас достоверность составляет примерно 92–93% на массиве из 10 ионов, которые в нашем случае эквивалентны 20 кубитам. На этом уровне мы можем выполнить порядка 10 двухкубитных операций, после чего точность падает ниже 50%. Но однокубитные операции мы делаем гораздо лучше: их точность достигает 99,9%» Илья Семериков
Кудиты

Группа Колачевского работает с кудитными операциями. Кудиты – особые квантовые системы, которые могут одновременно находиться в более чем двух состояниях и выполнять, в частности, двухкубитные операции. По сути, кудит является усовершенствованной версией кубита. В чем их преимущество?

«Мы можем провести некоторые двухкубитные операции внутри одного иона и получить двухкубитную операцию стоимостью в однокубитную. Ошибка в таком случае будет 0,1%, а не 10%,
как сейчас. Но это не все. Существуют специфические кудитные алгоритмы, которые можно запустить только на машине с кудитами. И они дают выигрыш в вычислениях в десятки раз» Илья Семериков

Кудитных универсальных процессоров в мире всего два: один построен в Инсбурге, второй – у Семерикова.

Годы работы

Квантовыми компьютерами Илья занимается всего четыре года, до этого он шесть лет работал с квантовыми сенсорами, а начинал свой путь в науку вообще с теоретической астрофизики, сидя этажом выше в том же институте.

«Но меня всегда влекла инженерия. А тут ее хоть отбавляй» Вспоминает ученый

Первые ионы в ловушке российские физики получили в конце 2020 года, за три года дотянувшись до уровня лучших научных групп по этому направлению. В качестве рабочего тела команда Семерикова использует ионы 171-го изотопа иттербия: у них одна из самых интересных квантовых структур уровней, которые охлаждаются при помощи лазера до минимально возможной температуры – порядка милликельвина. Для сравнения: самая низкая температура во Вселенной – 2,7 К, то есть ионы в квантовом компьютере в тысячу раз холоднее.

 Время жизни ионов

Удерживаются охлажденные ионы в сверхнизком вакууме электромагнитными полями. «У нас один из лучших вакуумов во Вселенной», – смеется Илья. На экране компьютера светятся 10 ярких точек-ионов. «Это вчерашние, – говорит физик. – А так они у нас живут неделю. Потом один из них "цепляет" водород, и вместо чистого иттербия получается его гидрид, который мы разрушаем при помощи лазера. Иногда не получается. Тогда мы ловим новые ионы».

Ионы расположены в вакуумной камере на расстоянии порядка 5 микрон друг от друга. Цепочкаиз 10 ионов – уже 50 микрон, вполне макроскопическая величина. «Зарядка» компьютера ионами происходит при помощи небольшой трубочки, в которую забит металлический иттербий. Она разогревается до 250–300 °С, иттербий начинает испаряться, и в сторону ловушки летит нейтральный поток атомов.

Внутри ловушки они подсвечиваются лазером и происходит изотопно-селективный переход на промежуточный уровень. Вторым фотоном отрывается электрон, причем только от 171-го изотопа иттербия, который и захватывается ловушкой. Примерно через 10 секунд на экране появляется светящаяся точка. 100 секунд – и компьютер заряжен ионами. Этого хватает на неделю экспериментов. По словам Ильи Семерикова, если уйти в криогенику, то время жизни ионов станет практически неограниченным: они в ловушке могут жить годами.

Вот такая sCMOS-камера позволяет наблюдать за цепочкой светящихся ионов.
Вот такая sCMOS-камера позволяет наблюдать за цепочкой светящихся ионов. ПАО "Туполев"
 
Ловушка

Первой трудной задачей было как раз создание ловушки. Ионы в ней удерживаются электромагнитным полем, и его важная характеристика – секулярная частота, частота колебаний ионов. В первой ловушке она составляла 1,5 МГц, в новой достигает 4,4 МГц. К тому же поле должно быть с низкими шумами, оно характеризуется темпами нагрева по числу фононов (квазичастица, квант энергии согласованного колебательного движения атомов) в секунду. Вот, например, в старом устройстве число темпа нагрева достигало 10 тыс. фононов в секунду, а в новом – всего 10, как у лучших ловушек в мире.

Уже музейный экземпляр – ионная ловушка, в которой был получен первый ионный кристалл в России еще в 2016 году.

Уже музейный экземпляр – ионная ловушка, в которой был получен первый ионный кристалл в России еще в 2016 году. ПАО "Туполев"

 
Лазер

Вторая сложность – лазер, при помощи которого производятся одно- и двухкубитные операции. Берут обычный коммерческий лазер с шириной линии порядка нескольких мегагерц и при помощи специальных техник уменьшают ее до 1 Гц. Для этого команде Семерикова пришлось создать ультрастабильный оптический резонатор, который помещается в вакуумную камеру с температурой стабильности 10–6 градусов.

Еще одна задача – автоматическая калибровка. В российской установке сотни параметров, и все нужно контролировать. Несколько десятков уже удалось автоматизировать, остальные ждут своей очереди. После этого Илья хочет перейти от оптического набора кудитов к радиочастотному, что увеличит время когерентности и позволит делать больше операций. Например, у квантовых компьютеров на сверхпроводниках время когерентности составляет порядка 0,5 мс, а у компьютеров на ионах – 20 мс, что в 40 раз лучше. На радиочастотных кубитах можно будет довести время до часа. После этого Семериков собирается заняться повышением уровня достоверности операций.

«Если бы достоверность двухкудитных операций была не 90–93%, а 99,7%, то у нас был бы самый мощный компьютер в мире» Илья Семериков
Количество имеет значение

«А что дальше?» – спрашиваю я. «Увеличивать количество кубит. – У Ильи на все готов ответ. – Над этой задачеймы тоже работаем: конструируем планарные ловушки».

Дело в том, что произвольно увеличивать цепочку ионов нельзя: теряется связанность. После 30 ионов проводить двухкубитные квантовые операции практически невозможно. Если надо работать с большим числом, приходится переходить на планарные ловушки, в которых ионы располагаются над поверхностью специального чипа, – что-то вроде обычных компьютерных микросхем, но сделанных по совершенно иной технологии. Требуются относительно большие элементы микронного, а не нанометрового размера и очень толстые диэлектрики. Но нельзя прийтина фабрику и сказать: «Ребята, сделайте мне, пожалуйста, вот такое же, только с толщиной диэлектрика 10 микрон». Тем не менее нам удалось найти тех, кто умеет работать с подобными величинами, и не за границей, а в России. Первую партию сложных ловушек уже изготовили в столичном МИЭТе.
 
Дорогое удовольствие

Квантовый компьютер – штука недешевая. Мы ходим с Ильей вокруг установки, и я интересуюсь стоимостью компонентов. Например, за оптический стол, на котором все смонтировано, пришлось заплатить около 1,3 млн руб. Он должен быть очень стабильным, «развязан» от пола, внутри – сложная сотовая структура. И это далеко не самая дорогая часть. Измеритель длин волн, который для всего мира выпускает компания из новосибирского Академгородка, продается за 10 млн. Оптический резонатор, который ребята собирают сами, обычно стоит под 20 млн. За лазеры для считывания состояний атомов тоже просят 20 млн; раньше их покупали в Германии, а теперь в Китае.

«Китайские, как ни странно, лучше, – отмечает Илья. – Но и дороже».

То есть оборудование всего для одной установки обходится минимум в 300 млн руб., а таких установок нужно несколько. Отдельная гордость Ильи – локализация: весь его квантовый компьютер можно собрать из отечественных и китайских комплектующих, так что санкции нашим физикам нипочем.

Самая дорогая часть установки и гордость группы Колачевского – ультрастабильный оптический резонатор, который они делают сами. Про него даже не скажешь «ювелирная работа»: такая точность ювелирам и не снилась.
Самая дорогая часть установки и гордость группы Колачевского – ультрастабильный оптический резонатор, который они делают сами. Про него даже не скажешь «ювелирная работа»: такая точность ювелирам и не снилась. ПАО "Туполев"

https://www.techinsider.ru/technologies/1628397-atomnaya-bomba-xxi-veka-uchenye-obyyasnyayut-tehnologiyu-sozdaniya-kvantovogo-kompyutera/

10.01.24 10.01.2024 Академгородок. Нейросети, химеры, квантовый эффект Холла и Ватикан

На тридцатом новогоднем семинаре ученые Института физики полупроводников им. А.В. Ржанова СО РАН, Института цитологии и генетики СО РАН, Института ядерной физики им. Г.И. Будкера СО РАН, Института химической кинетики и горения им. В.В. Воеводского СО РАН рассказали о ярких достижениях мировой науки в ушедшем году.

Несколько докладчиков выбрали темой сообщений Нобелевские премии, кроме того слушатели узнали о способностях нейросетей, достижениях медиков и биологов в области трансплантации человеческих органов, химеризме, взрывных, в прямом смысле, полупроводниковых соединениях и прочих успехах научного мира.

Деятельность ИФП СО РАН в 2023 году охарактеризовал директор института академик РАН Александр Васильевич Латышев. Он отметил, что институт провел несколько крупных конференций, школ молодых ученых, выездное заседание Объединенного ученого совета СО РАН по нанотехнологиям, совещание «Синергия промышленности и науки» при участии мэрии Новосибирска, а на Общем собрании СО РАН были представлены результаты крупного научного проекта «Квантовые структуры для посткремниевой электроники», выполняемого несколькими НИИ и вузами под руководством ИФП СО РАН:

«В числе важнейших достижений присуждение премии им. А.Ф. Иоффе главному научному сотруднику ИФП СО РАН доктору наук Матвею Вульфовичу Энтину. Кроме того, деятельность ученых Института была отмечена почётными знаками и благодарностями Минобрнауки России и Российской академии наук».

Тысячекратный рост производительности суперкомпьютеров каждые 10 лет

Академик Александр Леонидович Асеев поделился примечательными событиями в области микроэлектроники, приведя ключевые тезисы из докладов президента РАН академика Г.Я. Красникова на форуме «Микроэлектроника» и общем собрании РАН: «Прогресс в области освоения нанометровых размеров транзисторов вместе с переходом к новым конструкциям транзисторов, новым технологиям их расположения, применении новых материалов и совершенствовании нанолитографических машин приведет к преодолению ограничений, накладываемых законом Мура. Произойдет многократное увеличение счетной мощности полупроводниковых микросхем. Ожидается тысячекратный рост производительности суперкомпьютеров каждые 10 лет до зеттафлопс в 2035 г».

Цитируя президента РАН, Александр Асеев добавил, что создание квантовых фотонных вычислителей не заменит классическую электронику и суперкомпьютеры, но сильно расширит их возможности. Во-первых, по производительности и защищенности вычислений при применении квантовых технологий, во-вторых в снижении энергетических затрат при применении фотонных технологий.

В новый год без Новой физики?

Заведующий лабораторией ИЯФ СО РАН академик РАН Александр Евгеньевич Бондарь рассказал о работе специалистов Института ядерной физики, ставящей под вопрос существование Новой физики, то есть частиц и явлений, не описываемых Стандартной моделью: «Измерение, сделанное в ИЯФ СО РАН и опубликованное в этом году, кардинально переворачивает всё представление о нашем понимании и знании вакуума и частиц, возможно, дающих вклад в аномальный магнитный момент мюона. Экспериментальное измерение величины аномального магнитного момента мюона блестяще согласуется с теоретическим расчетом, это говорит о том, что Новой физики мы пока похоже не видим».

Химеры среди нас, а не только в греческой мифологии: муравьи и люди

История, рассказанная заведующим лабораторией генетики развития ИЦиГ СО РАН кандидатом биологических наук Нариманом Рашитовичем Баттулиным, касалась неожиданного фундаментального противоречия в области биологии.

«Хочу поделиться с вами сильным впечатлением этого года: оно связано с химерами и базируется на статье в Science. В ней описаны уникальные организмы — желтые сумасшедшие муравьи. Уникальность в том, что их пол определяется не так, как у остальных муравьев, пчел. У желтых сумасшедших муравьев уже на стадии существования всего двух клеток наблюдается смесь разных геномов. Клетки начинают развиваться в муравья, но отдельные “части” сделаны из разных геномов — из материнского и из отцовского.

Это фундаментальное нарушение правил, потому что все многоклеточные организмы строятся из идентичных геномов — одна клетка делится, и в каждой клетке тела одинаковые геномы. Если этого не соблюдать, то клетки начнут друг с другом конкурировать, это приводит к очень неустойчивому состоянию. А желтые сумасшедшие муравьи каким-то образом преодолели фундаментальное противоречие», — пояснил ученый.

Он подчеркнул, что у людей тоже выявлен химеризм, такой случай описан в США. Результаты генетического теста, проведенные для матери и ее нескольких детей, демонстрировали отсутствие родственной связи. Даже в случае, когда генетический материал для теста был взят незамедлительно после родов, проходивших под контролем врачей.

«Среди людей тоже встречаются химеры — иногда близнецы в утробе матери “сливаются” и получается организм, состоящий наполовину из одних клеток (с одним геномом), а наполовину – из других. В случае с матерью в США ученые выяснили, что она — химера, и в результате были даже сделаны определенные законодательные поправки.

Я хочу всем пожелать почаще встречать в следующем году такие будоражащие воображение случаи и преодолевать даже самые сложные и неразрешимые противоречия», — заключил Нариман Баттулин.

Нобелевская премия завтрашнего дня

Старший научный сотрудник лаборатории нелинейных лазерных процессов и лазерной диагностики ИФП СО РАН кандидат физико-математических наук Илья Игоревич Бетеров представил свой прогноз о том, какие исследователи могут получить Нобелевскую премию в недалекой перспективе: «Это Михаил Лукин и Владан Вулетич. Они продемонстрировали точность получения квантовых перепутанных состояний, с ультрахолодными нейтральными атомами выше 99,5% в массиве из шести атомов — выдающееся достижение, открывающее возможности для создания квантовых процессоров на основе нейтральных атомов, которые могли бы конкурировать со сверхпроводящими и ионными процессорами.  Михаил Лукин — теоретик, он генерирует основные идеи, как сделать такие квантовые состояния, а команда Вулетича их воплощает экспериментально».

Среди российских ученых Илья отметил лауреата премии «Вызов», молодого сотрудника Физического института академии наук (ФИАН) Илью Семерикова: «Группа исследователей реализовала прототип квантового процессора с четырьмя кудитами или восемью кубитами на ионной платформе. Илье Семерикову 31 год, и он один из самых перспективных исследователей в этой области».

Криминалистика, краска для волос и гигантское комбинационное рассеяние света

О прикладной научной работе, имеющей важное значение для идентификации личности, рассказала младший научный сотрудник лаборатории ближнепольной оптической спектроскопии и наносенсорики Нина Николаевна Курусь.

«Один из современных трендов в криминалистике — создание базы данных волос (как окрашенных, так и нет) людей разной этнической принадлежности, разного возраста и пола. Это необходимо, чтобы быстрое сканирование волос (в течение пары минут) позволяло определить потенциального обладателя волоса.

Была сделана исследовательская работа, в которой авторы попробовали дифференцировать признаки, которые отвечают за расовую принадлежность, возраст, пол и признаки, отвечающие за окрашивание. Затем авторы определяли не будут ли вышеперечисленные признаки мешать друг другу [при диагностике]. Исследование выполнялось методом гигантского комбинационного рассеяния света (ГКРС), для этого волосы помещались в раствор, содержащий золотые наночастицы».

В результате выяснилось, что методом ГКРС можно быстро выполнить анализ волос и установить этническую и половую принадлежность человека, его возраст, наличие в волосах красящего состава, тип последнего и даже марку. Присутствие красящего состава на волосах не искажает результаты определения.

«Авторы статьи оптимистично смотрят на перспективы метода гигантского комбинационного развития света, как альтернативы методам секвенирования  ДНК в криминалистике», — подытожила Нина Курусь.

Ватикан благословил квантовую механику (наконец!)

Заведующий лабораторией физики низкоразмерных электронных систем ИФП СО РАН член-корреспондент РАН Дмитрий Харитонович Квон напомнил участникам новогоднего семинара, что, по его мнению, самое выдающееся открытие второй половины двадцатого века — квантовый эффект Холла. Эффект был открыт Клаусом фон Клитцингом в 1980 г, а в 1985 году ученый получил Нобелевскую премию.

«В этом году летом, на конференции по двумерным материалам Клаус фон Клитцинг рассказал, что к нему обратился Ватикан (Папская академия наук) с просьбой рассказать о квантовом эффекте Холла. Вот такое благословение», — поделился Д.Х. Квон и процитировал стих Александра Блока, написанный в 1911 году:

…Ты все благословишь тогда,
Поняв, что жизнь — безмерно боле,
Чем quantum satis Бранда воли,
А мир — прекрасен, как всегда
.

Два человека и пришелец

Доктор физико-математических наук Вадим Михайлович Ковалев, заведующий лабораторией теоретической физики ИФП СО РАН рассказал об ученых, чьими достижениями он восхищен, и о космическом пришельце.

«Мы поздравляем сотрудника нашей лаборатории Матвея Вульфовича Энтина ―  лауреата премии им. А.Ф. Иоффе, которая была присуждена за цикл работ “Теория фотогальванического эффекта в средах без центра инверсии”. Это не один эффект, а большое направление, внутри которого существует множество разных механизмов и эффектов. Но неисчерпаемость фотогальванического эффекта в том, что он вышел даже за рамки полупроводниковых материалов, недавно мы показали, что он может существовать в сверхпроводниках».

Второй ученый, о котором упомянул Вадим Ковалев: Алексей Старобинцев, физик-теоретик, один из основоположников теории ранней Вселенной с де-ситтеровской (инфляционной) стадией.

«Известный факт: черные дыры излучают и испаряются, и открытие этого факта почему-то все приписывают Стивену Хокингу. На самом деле, об этом Хокингу (когда тот был в Москве) сообщил А. Старобинский, он как раз окончил университет и вместе со своим научным руководителем Я. Б. Зельдовичем убедил Хокинга, что в соответствии с принципом неопределённости квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы».

Космический пришелец 2023 года по версии Вадима Ковалева ―  субатомная частица «Аматэрасу» с огромной энергией: «244 квинтиллиона (десять в восемнадцатой степени)  электрон-вольт: в тридцать миллионов раз большая энергия у аматэрасу, чем у частиц на Большом адронном коллайдере. Аматэрасу обнаружили с помощью телескопа “Array” участники международного проекта, включающего группы  исследовательских и  образовательных учреждений Японии, США, России, Южной Кореи и Бельгии»,  ―  добавил исследователь.

Взрывоопасные полупроводники

О новых полупроводниковых материалах 2023 года слушатели узнали от заведующего лабораторией физических основ материаловедения кремния ИФП СО РАН доктора физико-математических наук Владимира Павловича Попова. Один из них ― нитрид углерода, с уникальными свойствами, теоретики предсказывали его твердость даже выше, чем у алмаза. Но вырастить его не так легко. «Большая команда европейских исследователей (где много бывших россиян) все же вырастили нитрид углерода, получив сразу четыре его фазы, включая тетрагональную и гексагональную. Для этого использовали обычные алмазные наковальни, в которых с помощью нагрева лазером создавалась температура свыше двухсот градусов, а давление достигало от 130 до 80 гигапаскалей. Когда давление и температуру снижали, полученные соединения оставались стабильными при обычных условиях».

Выяснилось, что выращенный таким образом нитрид углерода действительно близок по твердости к алмазу, и кроме того: «Нитрид углерода относится к классу энергоэффективных материалов, он превосходит тринитротолуол и гексаген, поэтому с ним надо работать с очень большой осторожностью. Не ударяйте молотком по новым полупроводниковым материалам!», ―  предостерег В. Попов.

Органы свиньи   ―  для пересадки человеку

Татьяна Александровна Шнайдер, научный сотрудник ИЦиГ СО РАН, подводя итоги года, рассказала о ксенотрансплантации: межвидовой пересадке органов, тканей и клеток: «Пересадка органов от животного к человеку никогда не заканчивались успехом, наша иммунная система не воспринимает чужой орган. Так происходит потому что на поверхности всех наших клеток ―  большое количество разных молекул, часть из них отвечают за рекогносцировку, в результате иммунная система распознает: свой или чужой.  Одна из ключевых молекул: альфа-гал (α-Gal), она есть у всех млекопитающих, кроме человека. Считается, что именно альфа-гал вызывает сильнейшее иммунное отторжение».

Ученые давно пытались обойти эту проблему, и реализовали две концепции. Первая состоит в том, что в теле животного выращивается орган, полностью состоящий из клеток человека, чтобы в органе не было молекул альфа-гал и он стал безопасным для пациента.

“Филигранная работа: ученые научились выращивать в эмбрионах свиньи почки, состоящие из клеток человека», ―  пояснила Т. Шнайдер.

Второй способ   ―  использовать генетически модифицированных животных.

«Можно модифицировать геном свиньи, чтобы она стала безопасна для пересадки органов. С помощью специальных молекулярных методов удалить ген, отвечающий за синтез альфа-гал и создать GalSafe свиней. Такую вещь сделали многие научные группы, но одна — “Revivicor” оказалась на шаг впереди и внесла еще десять модификаций, обеспечив максимальную безопасность свиней для человека», ―  продолжила историю исследовательница. 

Операция по пересадке органа от свиньи к человеку действительно была проведена   ―  для американского пациента, находящегося в терминальной стадии заболевания.

«Ему предложили так называемую терапию милосердия, по сути эксперимент, на который пациент и его семья дали согласие, и было получено разрешение от FDA. Чтобы столь быстро получить разрешение от FDA, исследователи ранее потратили несколько десятилетий. Свиньи GalSafe компании Revivicor были зарегистрированы, в первую очередь, как продукт питания для людей с аллергией на альфа-гал, после многолетних безуспешных попыток получить разрешение от FDA на терапевтический препарат. И уже к этому разрешению (на продукт питания) было сделано дополнение FDA о том, что можно использовать свиней GalSafe, как источник потенциального терапевтического применения. О том, что людей с аллергией на альфа-гал очень много и о причинах аллергии, ученые узнали из подкаста о науке “Radiolab”.

Пациент после операции прожил полтора месяца ―  не так много, но для умирающего человека ―  бесценная возможность провести время с семьей и близкими, напоследок сыграть в карты с любимой женой», ―  завершила рассказ Татьяна Шнайдер.

Chat GPT

Главный научный сотрудник лаборатории теоретической физики ИФП СО РАН доктор физико-математических наук Матвей Вульфович Энтин среди научных достижений 2023 года назвал работы Ливерморской лаборатории США по развитию термоядерного синтеза и появление нейросети Chat GPT. Ливерморская лаборатория продолжает воспроизводить прошлогодний положительный результат, когда в результате термоядерной реакции выделилось больше энергии, чем было потрачено на разогрев топлива.

Рассказывая про Chat GPT, Матвей Энтин показал примеры текстов, написанных нейросетью, среди которых была даже научная статья. Ученый добавил, что дал задание Chat GPT объяснить, что такое топологические изоляторы: «Получился очень хороший текст. На мой взгляд, он может служить введением в научную статью. Также я попросил нейросеть решить конкретную задачу, связанную с краевыми состояниями топологического изолятора. Однако, она ответила, что пока не может этого сделать».

Текст и фото предоставлены пресс-службой ИФП СО РАН

https://academcity.org/content/neyroseti-himery-kvantovyy-effekt-holla-i-vatikan

12.01.24 12.01.2024 Собака.ру. Иван Антонов: «Для меня самое интересное – понимать, как крутятся шестеренки мироздания»

В ноябре мир вспомнил, что Самара по праву считается одним из международных научных центров, после того, как ученые Самарского университета имени Королева вместе с коллегами из США доказали, что жизнь могла прилететь на Землю верхом на звезде. «Собака.ru» поговорила со старшим научным сотрудником самарского филиала ФИАН и доцентом кафедры физики в Самарском университета Иваном Антоновым – одним из авторов этого удивительного открытия.

Физика, химия и астрохимия

К какой области можно отнести ваше открытие – оно больше физическое или химическое?

Есть такая область на стыке двух наук: физики называют ее химическая физика, а химики – физическая химия. Но, по сути – это смежная интердисциплинарная область, которая попадает и туда, и туда понемногу. А так как наши эксперименты связаны с межзвездным веществом, это еще и астрохимия.

Большинство открытий, кроме тех, что совершаются абсолютно случайно, начинаются с какой-то гипотезы. Какое предположение лежало в основе вашего? 

В основе лежало вот что: примерно шестьдесят лет назад в космосе были открыты молекулы. И, если до этого момента предполагалось, что космическое пространство – это глубокий вакуум, в котором есть только какие-то простые – в основном водород и гелий – атомы, радиотелескопы доказали, что вещества в космосе излучают на определенных частотах, а эти частоты соответствуют энергии молекулярных переходов. То есть по этим частотам можно определить, какие именно молекулы уже существуют в космосе. С того времени начали открывать одну молекулу за другой: на сегодняшний день известно уже примерно двести пятьдесят молекул. Некоторые из них довольно простые, как например молекула водорода. А некоторые сложнее. Правда, здесь на Земле мы считаем их простыми органическими молекулами. Такими, как, например, уксусная кислота. С этими молекулами пока больше вопросов, чем ответов. Потому что как они образуются в космическом пространстве – совершенно непонятно. И гипотеза, которая могла бы объяснить их существование, была выдвинута нашим ведущим ученым – Ральфом Кайзером. Она заключается в том, что эти молекулы в космосе образуются на частицах пыли. Представляете, в космосе тоже есть пыль – она осталась от предыдущих звездных циклов. То есть, когда звезда взрывается и разрушается, от нее остаются пылинки. Они довольно маленькие – размером порядка десятка нанометров. Это меньше, чем клетка и сопоставимо с размером вируса. Так вот на этих пылинках при низких температурах могут оседать простые молекулы из космического вакуума. А потом поверхность пылинок облучается радиацией, космическими лучами и светом от звезд и в ней происходят химические реакции, которые ведут к появлению более крупных и более сложных молекул. А когда происходит новый цикл образования звезды, то есть газово-пылевое облако собирается в небольшой области под действием притяжения и в центре этого облака зажигается звезда, с пыли начинают испаряться молекулы, которые на ней образовались. И радиотелескопы видят эти молекулы. Так вот предположение было в том, что ледяные пленки на поверхности космической пыли – это некий инкубатор сложных органических молекул, которые могут попасть на новые планеты и дать основу для новой жизни.

То есть жизнь может зародиться из пыли буквально?

Примерно да! Вот эти пылинки – что с ними происходит при звездообразовании? Та часть из них, что около звезды просто теряет свои молекулы – они испаряются. А часть, которая летает где-то далеко, образует кометы. Вокруг нашей солнечной системы есть облако Оорта, которое состоит из комет – это пояс, который находится вне орбиты Плутона. Он расположен очень далеко от Земли – на расстоянии больше шести миллиардов километров. Но для комет это не предел и они периодически к нам залетали. Считается, что примерно четыре миллиарда лет назад траектории этих комет часто пролетали через центр Солнечной системы и бомбардировали внутренние планеты. И Землю тоже. 

Мы считаем, а они экспериментируют

Когда говорят, что работа разделилась на теоретическую и экспериментальную – как это было организовано на практике?

На практике это было коллаборацией: мы работали в Самарском университете имени Королева и самарском филиале ФИАН, а наши коллеги работали в университете Гавайев в США. У них есть экспериментальная установка, которую они построили лет десять назад, а мы умеем хорошо считать свойства веществ и определять, как протекают химические реакции при помощи методики, основанной на квантово-механических расчетах. Такие методы очень точные, но требуют большого вычислительного ресурса, который у нас в институте доступен: мы считаем на суперкомпьютере «Королев». Для исследования мы делали два типа основных расчетов: первый тип – это определение, каким образом могут происходить химические реакции, с участием определенных молекул. Рассчитывали, как эти молекулы реагируют и что из этого может получится.  А второй тип расчетов был связан с определением энергии ионизации продуктов реакции, по которым их потом могли идентифицировать в эксперименте на Гавайях. 

А вот эти экспериментальные установки – они с таким же антуражем, как в «Человеке-пауке»? Все сверкает и искрит?

Не совсем. Я бы даже сказал: все гораздо скромнее. Но выглядит неплохо. И не искрит, конечно, ничего: желательно, чтобы все было максимально безопасно. Мы сейчас как раз заканчиваем создание собственной установки, чтобы проводить эксперименты самостоятельно и следим, чтобы соблюдались все требования техники безопасности.

В чем главная сложность создания такой установки?

Главная сложность в том, что необходимо сымитировать условия глубокого космоса, в котором царит очень глубокий вакуум – его почти нереально получить на Земле. Мы стараемся создать условия, которые бы ничем не отличались с точки зрения химии. А другие трудности связаны с получением низких температур, сравнимых с космическими, а это примерно четыре-пять градусов выше абсолютного нуля. Очень сложно получить сочетание таких параметров.

Открытие, которое изменило взгляд на мир

Насколько ваше открытие – то, что Земля получила жизнь из космоса – изменит парадигму мышления многих людей?

Все немного не так. Открытие не в том, что Земля получила жизнь из космоса, а в том, что строительные материалы для образования жизни могли быть занесены из космоса. Но могли же и здесь образоваться! Так что эти две гипотезы по-прежнему равнозначны и не противоречат друг другу. Просто наше открытие добавило космической версии происхождения жизни еще один аргумент. В чем он заключается? В том, что ранним клеткам, которые могли образоваться на Земле, нужно было каким-то образом получать из внешней среды вещества – ионы металлов, которые нужны для того, чтобы клетки могли размножаться. Современные клетки используют для транспорта металлов белки – сложные макробиологические молекулы, которые синтезируются с помощью сложных процессов. В древних клетках этих процессов, скорее всего, быть не могло. А как же тогда размножаться? На ранней Земле могли быть простые молекулы, которые образовались в космосе. Они могли связываться с атомом металла, образовывая прочную связь – как клешней краба хватать этот атом и пропихивать его через клеточную мембрану.

Хорошо. А, кроме теоретического обоснования гипотезы, у вашего открытия есть какой-то практический результат? Будет ли он как-то использоваться в промышленности?

В промышленности скорее всего нет. По крайней мере, я такого применения не вижу на сегодняшний день – это все-таки не прикладная наука, а фундаментальная. С другой стороны, с фундаментальной наукой всегда сложно понять, когда пригодится то, над чем сегодня ведутся работы. На какой-то спирали научно-технического развития открытия фундаменталистов дают неожиданный прикладной выхлоп. Однозначно предсказать нельзя, но теоретически это важно.

А почему вы выбрали фундаментальную науку? Всегда интересно, как люди приходят в эту сферу.

Наука выбрала меня сама. Я учился в Самарском университете, а потом уехал учиться в аспирантуре в США. Так получилось, что я попал в группу, которая изучала простые молекулы, содержащие уран и бериллий. В основном это были работы, направленные на фундаментальное понимание молекулярных связей. У наших экспериментов было прикладное применение: мы говорили, что изучаем урансодержащие молекулы, чтобы оптимизировать утилизацию ядерного топлива. Но фундаментальная составляющая была для меня более важна. И более интересна. С тех пор меня постоянно мотает: из прикладной науки в фундаментальную и из физики в химию. Сейчас у меня очередной фундаментальный этап. Знаете, наверное, можно аргументировать, что фундаментальная наука важнее прикладной, которую можно считать конечным этапом научного развития: ты уперся в проблему лбом и решаешь ее. А фундаментальная – это когда ты в центре вселенной, а куда дальше приведут тебя твои открытия, никто не знает. И все дороги открыты.

Возвращение домой и вера в чудеса

Вы разрушили один из главных стереотипов нового времени и вернулись из США, где созданы более комфортные условия для занятия наукой, в Россию. Что вами двигало?

Я всегда хотел вернуться: уезжая в Америку, я не планировал там оставаться. Просто хотел получить образование и опыт. К тому же здесь мне здесь предложили участие в интересном проекте – создании экспериментальной установки. Я преподаю, взаимодействую со студентами и передаю им свой опыт. Наверное, я бы мог найти работу и отлично устроиться в Штатах, но мне хотелось пригодиться здесь. 

О чем вы мечтаете?

Из-за своей сложной траектории в науке, я зацепил несколько разных интересных направлений, поэтому мне бы хотелось развивать некоторые идеи и проекты в этих сферах. Получить финансирование для создания новых экспериментальных установок – я все-таки больше экспериментатор, а не теоретик. Я мечтаю создать новые научные направления и развивать их, хочу оставить некую научную школу за собой – пожалуй, типичные мечты для ученого моего возраста.

Верят ли ученые в сказки и чудеса?

Конечно да! Знаете, у меня был интересный опыт во время работы в США. Когда я работал в Северо-Западном университете на физическом факультете, несколько профессоров – с хорошим мировым именем! – в нем были сильно верующими христианами. И, глядя на них, я понимал, что конфликта между научным и религиозным познанием у них нет. И быть не должно: способы познания у науки и религии разные. Это осознание, конечно, не сделало меня верующим, но есть вещи, которые наука объяснить не в состоянии. Есть вещи, которые людям проще понимать с помощью веры. И я отношусь к этому с пониманием.

А дальше – это главное!

Что вы можете сказать о том, куда движется человечество? Каких технологических прорывов можно ждать в ближайшее время?

Я вижу, что уже очень давно идет прогресс в информационной сфере, но при этом нет существенного прогресса в области новых источников энергии и новых способов передвижения. Во многом затык в этих областях связан с тем, что мы уперлись в пределы наших технологий, основанных на химических источниках энергии. А, чтобы добиться прогресса в этих областях, нам нужны новые материалы – все упирается в них. Взять, например, термоядерный синтез: чтобы это технология появилась – а ее появление решит множество проблем человечества – нужны материалы, способные выдерживать громадный поток нейтронов. И не просто выдерживать, а поглощать эти нейтроны и переводить их энергию в тепло. Пока таких материалов нет. И прогресса тоже. Есть интересные области, связанные с квантовыми вычислениями и компьютерами. Она сейчас активно развивается, но момент, когда появится квантовый компьютер не находится в ближайшем будущем.

Но ведь появление новых материалов и квантовых компьютеров кроме всего прочего изменит привычный жизненный уклад? Те же пароли например потеряют свой смысл.

Это не самое важное – быстро появится новая система кодировки, которая будет базироваться на других принципах. Квантовые компьютеры важнее по другим причинам: в 80-е годы поздний Ричард Фейнман объяснил, зачем человечеству квантовые вычисления. Если мы хотим предсказывать свойства веществ, материалов и новых лекарств, нам нужны способы, которые будут использовать не стандартную двоичную структуру, а кубиты – биты, которые могут находиться в суперпозициях и учитывать не просто вклад каждого, но и относительную фазу. А когда мы начинаем использовать классическую двоичную структуру, то быстро упираемся в нехватку памяти, чтобы сохранить объем информации, который нужен даже для описания небольших молекул. Обычную аминокислоту мы сейчас можем посчитать только очень приблизительно, а квантовый компьютер позволит резко повысить точность расчетов. А еще он позволит предсказать свойства нового материала, что позволит перенести исследования из лабораторий в квантово-вычислительный центр и ускорить прогресс и скорость разработки новых веществ и лекарств. Но с квантовыми компьютерами пока больше шума, чем дела. 

А что вы скажете о межпланетных путешествиях, о которых говорит Илон Маск?

Ну, мы же уже запускаем межпланетные космические аппараты – это сложная техническая задача, но она решаема. А, если говорить о пилотируемых полетах, мне кажется их давно бы уже запустили, если бы не было возможности решать какие-то задачи без участия человека. Запустить на Марс человека можно. Но зачем? Это опасно и есть множество проблем, которые связаны с длительностью перелета и воздействием радиации. Это лотерея буквально – запустить человека в космос на год, зная, что пока он будет лететь до Марса доза радиации может стать смертельной. Представьте: экипаж корабля десять человек и один из них точно умрет от лучевой болезни. Риск велик. В прошлые века подобные риски не останавливали искателей приключений. Но времена изменились и стоимость человеческой жизни выросла. 

Скажите как физик и химик: разговоры о глобальном потеплении – это очередная страшилка или нас ждет коллапс? 

Глобальное потепление – это такая большая и сложная концепция, у которой много проявлений в самых различных областях. Эта концепция основана на том, что концентрация углекислого газа в атмосфере последние примерно лет семьдесят растет. И растет практически линейно – это объективный факт. Этот рост многие связывают с деятельностью человека и у такого мнения есть основания. А к чему приводит рост концентрации углекислого газа? К тому, что часть теплового излучения Земли перенаправляется обратно, а в космос излучается меньше тепла. То есть к тому, что видимая из космоса температура Земли постоянно снижается и это приводит к повышению средней температуры на планете. А дальше интересно: существуют механизмы, которые не очень хорошо изучены. Это всевозможные виды обратных связей, которые разделяют на отрицательные и положительные. Например, отрицательная обратная связь означает, что если у вас подрастает температура на планете есть некий механизм, который этот рост компенсирует. А положительная обратная связь – наоборот, поднимает температуру, если она растет. Именно баланс этих механизмов в конечном итоге определит, насколько разрушительным и опасным может быть повышение температуры. Некоторые ученые считают что небольшой рост средней температуры планеты ни к чему особо не приведет. Но есть и противоположная точка зрения: положительные обратные связи кратно повысят скачок температуры на Земле. Если это произойдет, нас ожидают довольно тяжелые последствия и часть суши может стать непригодной для жизни. Так что говорить о том,что за глобальным потеплением ничего не стоит все же нельзя: на него нельзя не обращать внимания.

А что самое интересное в вашей работе?

Для меня самое интересное – понимать, как что-то устроено и как крутятся шестеренки мироздания. Та область физической химии, которой я занимаюсь, сильно математимизирована и мне очень интересно находить новые интересные математические соотношения для каких-то физических процессов и строить численные модели, основанные на эксперименте. Я все таки люблю, когда есть возможность сделать что-то руками, а не только в теории. 

Фото: Михаил Денисов

https://www.sobaka.ru/smr/city/science/176880

19.01.24 18.01.2024 Научная Россия. Гиперзвук исправит дефекты полупроводников

Коллектив исследователей из ФИАН и МФТИ разрабатывает подход, который в перспективе позволит без прямого контакта с полупроводником вылечивать в нем некоторые типы дефектов. Ученые демонстрируют возможность «выгонять» дефект из полупроводниковой структуры с помощью лазерного гиперзвука, а движение дефекта детектируют по тонким изменениям в структуре пространственного свечения кристалла. Исследование поможет в разработке простой и доступной технологии улучшения качества полупроводниковых гетероструктур. Работа опубликована в журнале Journal of Applied Physics.

Гиперзвуковые волны, распространяющиеся вдоль среза (111) монокристалла теллурида кадмия. Пятно в центре рисунка – область начального возбуждения волны. Источник: ФИАН

Современная физика полупроводниковых гетероструктур изучает сложные многослойные объекты с хитрым строением. Например, структуры с множественными квантовыми ямами для изготовления лазеров или фотодетекторов. В таких структурах могут быть дефекты-вредители — дислокации: атомные цепочки или даже целые плоскости атомов, которые стоят не на своем месте. «Нарушители порядка» появляются в процессе производства кристаллов из-за неоднородности подложки, на которой выращивают структуру, случайного загрязнения или недостаточно точного контроля определенных технологических параметров.

Даже на современном уровне развития полупроводниковых технологий невозможно идеально контролировать процесс производства на атомном уровне. Например, в крупноформатной фоточувствительной матрице, в которой по сложной технологии изготавливаются много разных гетероструктурных пикселей, 100% пикселей не получаются «здоровыми». Дефекты-вредители могут приводить к непредсказуемым изменениям свойств материала. Это приводит к появлению неправильно работающих, «больных» пикселей. Соответственно, нужен метод воздействия на данные пиксели чтобы по возможности уменьшить их количество.

Ранее в литературе был описан механизм воздействия на один из распространенных типов линейных дефектов с помощью пучка высокоэнергетичных электронов: в просвечивающем электронном микроскопе можно обнаружить дислокацию, затем с помощью сфокусированного пучка электронов сместить эту дислокацию или изменить ее внутреннюю структуру. При определенных условиях удавалась полностью устранить структурный дефект. Идея исследователей из ФИАН и МФТИ состояла в том, чтобы реализовать похожую технику, но в более простой, полностью оптической установке.

В качестве метода воздействия выбрали сфокусированный лазерный импульс длиной в сотни пикосекунд. Этот импульс поглощается в приповерхностных слоях кристалла и нарушает покой электронно-дырочной системы, основных «жителей» полупроводника. Чтобы успокоиться, система сбрасывает энергию в виде фононов — квантов колебаний кристаллической решетки. При правильном механизме возбуждения, наряду с квазитепловыми фононами, образуется гиперзвуковая деформационная волна, или, по-другому, импульс когерентных фононов гигагерцовых или субтерагерцовых частот. Эта волна, как считают авторы, приводит к скольжению дефекта и теоретически может позволить «выгонять» дислокации из кристалла.

Остается только проверить, что дефект-вредитель перебрался в другое место. Оптическим микроскопом напрямую дислокацию не увидеть, она слишком мала. Но можно подключить к решению задачи косвенный метод — микрофотолюминесценцию при низкой температуре. Электрон-дырочные пары цепляются за дефекты в кристалле и, если температура достаточно низкая, формируют яркие точечные излучатели. А при движении дефекта по кристаллу картина высвечивания будет изменяться, и таким образом можно уловить движение дислокации.

«У нас есть инструмент, который запускает волну гиперзвука, которая, в свою очередь, стимулирует движение дислокации, и инструмент, который позволяет увидеть ее движение. На примере распространенного модельного полупроводника мы показали, что можно подобрать параметры инструментов и заставить дефект двигаться, – комментирует Владимир Кривобок, руководитель Отдела твердотельной ИК фотоники Физического института им. П.Н. Лебедева РАН. – Метод можно обобщить на другие полупроводниковые материалы и пробовать создать технологию».

Как и многие интересные научные результаты, этот был получен побочно, в процессе исследования сложных полупроводниковых гетероструктур. Натолкнуться на идею позволило наличие у ученых двух установок: гиперзвукового микроскопа и установки для измерения микрофотолюминесценции при низких температурах. Гиперзвуковой микроскоп позволяет создать импульс, который выгоняет дислокацию из кристаллической структуры полупроводника, а микрофотолюминесценция помогает проверить, что «терапия» сработала.

Полученные результаты станут основой для разработки полностью оптической технологии локальной лазерной обработки протяженных дефектов в полупроводниках.

Исследование выполнено при поддержке Федеральной программы академического лидерства «Приоритет 2030».

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/giperzvuk-izlecit-poluprovodnik-ot-defektov

Подкатегории