СМИ о нас

21.02.24 15.02.2024 NanoNewsNet. Фабрика по производству «кирпичиков» жизни заработала в Самаре

В Самаре создали космическую фабрику «кирпичиков» жизни — это экспериментальная установка мирового уровня, которая позволяет исследовать эволюцию органических молекул в нашей Галактике. Фабрика должна помочь в разгадке тайны зарождения жизни на Земле. Об этом сообщила пресс-служба Самарского университета.

Внутри установки можно воспроизводить условия различных уголков далекого космоса — от холодных молекулярных облаков до областей звездообразования. Температуру экспериментов допустимо менять в диапазоне от четырех до 350 градусов Кельвина (от –269 до +76ºC). Специальные насосы создают внутри основной камеры установки сверхвысокий вакуум — это позволяет избежать появления в рабочем пространстве каких-либо загрязнений или примесей.

С помощью этого оборудования можно в том числе моделировать воздействие космического ионизирующего излучения на внеземные и межзвездные льды.

«Проведены первые эксперименты и получены интересные результаты. Основной задачей первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду», — рассказал доцент кафедры физики Самарского университета имени Королёва Иван Антонов.

По его словам, в установке удалось наморозить метановый лед в виде очень тонкой пленки, менее одного микрометра толщиной, при температуре менее 5 Кельвинов (-268ºC). После облучения исследователи обнаружили во льду не только метан, но и молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводороды — пропан и бутан.

«Эксперименты показали, что установка работает как задумано. Полученные данные по механизмам образования пропана и бутана мы опубликуем и представим на научных конференциях», — отметил Иван Антонов.

Запущенная установка стала ключевым элементом Центра лабораторной астрофизики Самарского филиала Физического института имени П. Н. Лебедева РАН (СФ ФИАН).

https://www.nanonewsnet.ru/news/2024/fabrika-po-proizvodstvu-kirpichikov-zhizni-zarabotala-v-samare

21.02.24 15.02.2024 Самара сегодня. В Самаре запустили космическую фабрику «кирпичиков» жизни

Для первых экспериментов был смоделирован свет молодых звезд.

В Самаре введена в эксплуатацию космическая фабрика «кирпичиков» жизни — экспериментальная установка мирового уровня, воспроизводящая условия глубокого космоса и позволяющая экспериментально исследовать эволюцию органических молекул в нашей Галактике. Изучение на практике путей возникновения в космосе «кирпичиков» жизни — биохимически важных молекул — должно помочь в разгадке тайны зарождения жизни на Земле.

Запущенная установка является ключевым элементом Центра лабораторной астрофизики Самарского филиала Физического института имени П.Н. Лебедева РАН (СФ ФИАН). Центр астрофизики был создан в рамках мегагранта правительства РФ «Происхождение и эволюция органических молекул в нашей Галактике». Созданием и запуском установки занималась совместная команда ученых СФ ФИАН и Самарского университета им. Королёва. Смонтированное оборудование обладает уникальными характеристиками, с его помощью можно моделировать воздействие космического ионизирующего излучения на аналоги внеземных, межзвездных льдов в широком диапазоне химических и физических параметров. В ходе первых экспериментов ученые получили в космических условиях из метанового льда высокомолекулярные компоненты природного газа — пропан и бутан.

«Работы по сборке установки завершены, мы ее запустили. Проведены первые эксперименты и получены интересные результаты. Основной задачей этих первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду», — рассказал доцент кафедры физики Самарского университета им. Королёва Иван Антонов.

Как отметил ученый, метановый лед является достаточно хорошо изученной системой, ученые в разных странах уже облучали такие аналоги внеземного льда ультрафиолетовыми лучами, электронами, протонами, альфа-частицами и ядрами более тяжелых элементов.

«Известно, что при облучении образуются более высокомолекулярные углеводороды, но при этом механизмы реакций различаются в зависимости от того, чем лед облучают. Мы использовали УФ-фотоны с энергией 10.5 эВ, это близко к линии атомарного водорода Лайман-альфа — таких фотонов в космосе особенно много в свете молодых звезд. Метановый лед удалось наморозить в установке в виде очень тонкой пленки, менее одного микрометра толщиной, при температуре менее 5 Кельвинов (минус 268 градусов Цельсия). После облучения мы кроме метана увидели во льду еще молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводороды — пропан и бутан. Эксперименты показали, что установка работает как задумано. Полученные данные по механизмам образования пропана и бутана мы опубликуем и представим на научных конференциях», — сообщил Иван Антонов.

https://samaratoday.ru/news/450741

21.02.24 15.02.2024 Интерфакс. В Самаре запустили установку для изучения эволюции органических молекул Млечного Пути

Самара. 15 февраля. ИНТЕРФАКС - Ученые в Самаре ввели в эксплуатацию экспериментальную установку, которая поможет исследовать эволюцию органических молекул Млечного Пути, сообщает пресс-служба Самарского университета им. С.П. Королева в четверг.

Установка поможет смоделировать воздействие космического ионизирующего излучения на аналоги внеземных, межзвездных льдов в широком диапазоне химических и физических параметров.

"Работы по сборке установки завершены, мы ее запустили. Проведены первые эксперименты и получены интересные результаты. Основной задачей этих первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду", - приводятся в сообщении слова доцента кафедры физики Самарского университета им. Королёва Ивана Антонова.

Как отметил ученый, метановый лед является хорошо изученной системой, и ученые в разных странах уже облучали такие аналоги внеземного льда ультрафиолетовыми лучами, электронами, протонами, альфа-частицами и ядрами более тяжелых элементов.

В данном случае использовали УФ-фотоны с энергией 10.5 эВ, это близко к линии атомарного водорода Лайман-альфа - таких фотонов в космосе особенно много в свете молодых звезд.

"Метановый лед удалось наморозить в установке в виде очень тонкой пленки, менее одного микрометра толщиной, при температуре менее пяти Кельвинов (минус 268 градусов Цельсия). После облучения мы кроме метана увидели во льду еще молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводороды - пропан и бутан. Полученные данные по механизмам образования пропана и бутана мы опубликуем и представим на научных конференциях", - цитирует пресс-служба Антонова.

Ранее сообщалось, что внутри создаваемой в Самаре установки можно будет воспроизводить условия различных уголков межзвездной среды - от холодных молекулярных облаков до областей звездообразования.

В ходе этих экспериментов планируется получить биологически важные молекулы и тогда, например, можно будет понять, как в космосе образуются простейшие аминокислоты, которые затем с помощью метеоритов могут попасть на Землю.

Работы по сборке оборудования ведут ученые Центра лабораторной астрофизики Самарского филиала Физического института имени П.Н. Лебедева РАН (СФ ФИАН) и Самарского университета им. С.П. Королёва.

Также сообщалось, что в 2021 году в Самарском университете в международной научно-исследовательской лаборатории "Физика и химия горения" в рамках мегагранта правительства РФ была создана самая большая в мире экспериментальная установка, которая позволяет исследовать и моделировать не только процессы, происходящие в камерах сгорания газотурбинных двигателей, но и химические реакции, характерные для околозвездного пространства. Как было доказано учеными, в результате этих химических реакций на поверхности звездных пылинок, образованных из полициклических ароматических углеводородов, могут синтезироваться органические молекулы.

https://academia.interfax.ru/ru/news/articles/12394/

21.02.24 15.02.2024 НИА Сам. В Самаре запустили космическую фабрику «кирпичиков» жизни
В Самаре запустили космическую фабрику "кирпичиков" жизни

В Самаре введена в эксплуатацию космическая фабрика "кирпичиков" жизни - экспериментальная установка мирового уровня, воспроизводящая условия глубокого космоса и позволяющая экспериментально исследовать эволюцию органических молекул в нашей Галактике. Изучение на практике путей возникновения в космосе "кирпичиков" жизни - биохимически важных молекул - должно помочь в разгадке тайны зарождения жизни на Земле.

Запущенная установка является ключевым элементом Центра лабораторной астрофизики Самарского филиала Физического института имени П.Н. Лебедева РАН (СФ ФИАН). Центр астрофизики был создан в рамках мегагранта правительства РФ "Происхождение и эволюция органических молекул в нашей Галактике". Созданием и запуском установки занималась совместная команда ученых СФ ФИАН и Самарского университета им. Королёва. Смонтированное оборудование обладает уникальными характеристиками, с его помощью можно моделировать воздействие космического ионизирующего излучения на аналоги внеземных, межзвездных льдов в широком диапазоне химических и физических параметров. В ходе первых экспериментов ученые получили в космических условиях из метанового льда высокомолекулярные компоненты природного газа - пропан и бутан.

https://www.niasam.ru/obrazovanie/v-samare-zapustili-kosmicheskuyu-fabriku-kirpichikov-zhizni-229206.html

21.02.24 15.02.2024 Pro космос. В Самаре создали установку для изучения эволюции органических молекул Млечного Пути

Самарские ученые запустили экспериментальную установку, которая воспроизводит условия дальнего космоса. Устройство позволяет изучить эволюцию органических молекул в нашей Галактике и понять, как зародилась жизнь на Земле. Ученые уже добились первых результатов — из метанового льда удалось получить пропан и бутан.

Установка находится в Центре лабораторной астрофизики Самарского филиала Физического института имени П.Н. Лебедева РАН (СФ ФИАН). Созданием и запуском оборудования занимались ученые СФ ФИАН и Самарского университета имени Королева. Устройство позволяет моделировать в широком диапазоне химических и физических параметров условия дальнего космоса, а именно того, как космическое ионизирующее излучение влияет на аналоги внеземных, межзвездных льдов.

Во время первых экспериментов таким способом ученые получили из метанового льда высокомолекулярные компоненты природного газа. «Основной задачей этих первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду», — рассказал доцент кафедры физики Самарского университета имени Королева Иван Антонов. 

При облучении образуются более высокомолекулярные углеводороды, но при этом механизмы реакций различаются в зависимости от того, чем лед облучают. «Мы использовали УФ-фотоны с энергией 10.5 эВ, это близко к линии атомарного водорода Лайман-альфа — таких фотонов в космосе особенно много в свете молодых звезд», — пояснил Антонов. Метановый лед удалось наморозить в установке в виде очень тонкой пленки менее 1 микрометра толщиной, при температуре менее 5 Кельвинов (-268 градусов Цельсия). После облучения, кроме метана, исследователи увидели во льду молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводородыпропан и бутан. «Эксперименты показали, что установка работает как задумано. Полученные данные по механизмам образования пропана и бутана мы опубликуем и представим на научных конференциях», — добавил Антонов.

Идея изучения взаимодействия ионизирующего излучения с аналогами межзвездных льдов — не нова, но ученые до сих пор точно не могут сказать, как синтезируются сложные органические молекулы в межзвездном пространстве. Проводить исследования раньше было сложно из-за технических ограничений и отсутствия нужного оборудования. 

Внутри созданной в Самаре установки можно воспроизводить условия различных уголков межзвездной среды — от холодных молекулярных облаков до областей звездообразования. Температуру можно регулировать в диапазоне от 4 до 350 градусов Кельвина (от -269 до +76 градусов Цельсия). Специальные насосы внутри основной камеры установки создают сверхвысокий вакуум, благодаря чему в рабочем пространстве не появятся загрязнения или примеси.

В центре основной камеры установлено крохотное серебряное зеркальце площадью всего 1 кв. см. Во время экспериментов с помощью газовых конденсационных узлов на нем образуется тонкая ледяная «мантия» толщиной в несколько сотен нанометров — именно такую толщину имеет лед, который покрывает частицы звездной пыли в космосе, считают ученые. В составе льда, помимо воды, — ароматические молекулы в разных процентных соотношениях. 

Покрытое льдом серебряное зеркальце выступает в роли мишени, которую во время экспериментов «обстреливают» пучками частиц — фотонов, электронов и других, как это происходит в реальных условиях космоса. Продукты реакций, которые образуются в результате, фиксируют и анализируют научные приборы. Согласно расчетам, установка «ускоряет» время протекания реакций — например, уровень облучения фотонами ледяной мишени на установке в течение девяти часов эквивалентен такому же воздействию в реальных условиях космоса за одни миллион лет.

Эксперименты на установке позволят получить биологически важные молекулы, чтобы понять, как в космосе образуются простейшие аминокислоты, которые затем могут попасть на Землю. Научное оборудование также пригодится для испытаний перспективных материалов для обшивки космических кораблей и спутников  на радиационную прочность. Для этого установка получит несколько источников энергетических частиц, чтобы наглядно показывать, что произойдет с тем или иным веществом в условиях космоса с течением времени. 

https://prokosmos.ru/2024/02/16/v-samare-sozdali-ustanovku-dlya-izucheniya-evolyutsii-organicheskikh-molekul-mlechnogo-puti

21.02.24 15.02.2024 РБК. Миллион лет за 10 часов. Запущена космическая фабрика «кирпичиков жизни»

Фото: Андрей Павлов / Самарский университет

Самарские ученые запустили космическую фабрику «кирпичиков жизни» — экспериментальную установку, воспроизводящую условия глубокого космоса. Она позволяет экспериментально исследовать эволюцию органических молекул в нашей Галактике, сообщили РБК Life в Самарском университете имени Королева и поделились деталями исследования.

Разгадка тайны зарождения жизни на Земле

Экспериментальное изучение путей возникновения в космосе «кирпичиков жизни» — так ученые называют биохимически важные молекулы — должно помочь в разгадке тайны зарождения жизни на Земле.

Фото: Самарский университет

Созданием и запуском установки занималась совместная команда ученых Самарского филиала Физического института имени П.Н. Лебедева РАН (СФ ФИАН) и университета им. Королева. Это оборудование обладает уникальными характеристиками. С его помощью можно моделировать воздействие космического ионизирующего излучения на аналоги внеземных льдов в широком диапазоне химических и физических параметров. В ходе первых экспериментов ученые получили из метанового льда высокомолекулярные компоненты природного газа — пропан и бутан.

При чем тут метановый лед

Как пояснил редакции доцент кафедры физики Самарского университета Иван Антонов, метановый лед является достаточно хорошо изученной системой, ученые в разных странах уже облучали такие аналоги внеземного льда ультрафиолетовыми лучами, электронами, протонами, альфа-частицами и ядрами более тяжелых элементов.

«При облучении образуются более высокомолекулярные углеводороды, но при этом механизмы реакций различаются в зависимости от того, чем лед облучают. Мы использовали УФ-фотоны с энергией 10.5 эВ, это близко к линии атомарного водорода Лайман-альфа — таких фотонов в космосе особенно много в свете молодых звезд. Метановый лед удалось наморозить в установке в виде очень тонкой пленки, менее одного микрометра толщиной, при температуре менее 5 Кельвинов (-268 °С)».

После облучения исследователи, кроме метана, увидели во льду еще молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводороды — пропан и бутан. Эксперименты показали, что установка работает как задумано, заключили самарцы.

Об установке

Внутри созданной в Самаре установки можно воспроизводить условия различных уголков межзвездной среды — от холодных молекулярных облаков до областей звездообразования. Температуру экспериментов можно менять в широком диапазоне от четырех до 350 °К (от -269 °С до +76 °С). Специальные насосы создают внутри основной камеры установки сверхвысокий вакуум, благодаря чему исключено появление в рабочем пространстве каких-либо загрязнений или примесей.

Фото: Самарский университет

В центре основной камеры установлено крохотное серебряное зеркальце площадью всего 1 кв. см. Во время экспериментов с помощью газовых конденсационных узлов на зеркальце образуется тонкая ледяная «мантия» толщиной несколько сотен нанометров. Слой льда именно такой толщины покрывает частицы звездной пыли в космосе, полагают исследователи. Состав льда особенный: кроме привычной воды, в качестве ингредиентов такого внеземного материала выступают различные ароматические молекулы в разных процентных соотношениях.

Покрытое льдом серебряное зеркальце является мишенью, которую во время экспериментов «обстреливают» пучками частиц — фотонов, электронов и других, совсем как в реальном космосе. Научные приборы фиксируют и анализируют образующиеся продукты реакций. Согласно расчетам, установка ускоряет время протекания реакций. Десять часов облучения фотонами ледяной мишени на установке примерно эквивалентны 1 млн лет облучения льда фотонами в условиях молекулярного облака в космосе.

Примечательно! Исследования в сфере взаимодействия ионизирующего излучения с аналогами межзвездных льдов проводятся в мире уже почти полвека, однако понимание синтеза сложных органических молекул в межзвездном пространстве до сих пор находится в зачаточном состоянии. Предыдущие исследования были ограничены техническими возможностями для проведения экспериментов и недостаточной чувствительностью оборудования для анализа образующихся молекул. Теперь эти сдерживающие факторы устранены.

Что дальше

Как считают ученые, в серии экспериментов с неземным льдом удастся получить те самые «кирпичики жизни». Тогда можно будет понять, как в космосе образовались простейшие аминокислоты, которые затем с помощью метеоритов могли попасть на Землю.

Фото: Самарский университет

Оборудование также можно будет использовать для испытаний на радиационную прочность перспективных материалов для обшивки космических кораблей и спутников: установку хотят оснастить несколькими источниками частиц, чтобы можно было наглядно убедиться, что случится с тем или иным веществом в условиях космоса в течение определенного времени. Оборудование легко адаптировать для определения радиационной стабильности материалов и покрытий космических зондов и лунных станций.

В университете заключили, что теперь Самару можно по праву считать мировым научным центром в сфере исследований зарождения жизни во Вселенной.

О своих планах ученые рассказали еще в прошлом году, готовясь к запуску «космической фабрики». Директор СФ ФИАН, профессор кафедры физики Самарского университета им. Королева Валерий Азязов пояснил, что целью эксперимента является «уточнить химическую эволюцию Солнечной системы и приблизиться к пониманию, как на Земле могла зародиться жизнь». Азязов подчеркнул в беседе с РБК, что в мире нет ни одной лаборатории, которая обладала бы всеми возможностями для проведения подобных исследований на стыке физики, химии, биологии и астрофизики.

https://www.rbc.ru/life/news/65cdec779a7947680ab7b7d0

21.02.24 15.02.2024 Наука.РФ. Фабрика по производству «кирпичиков» жизни заработала в Самаре

В Самаре создали космическую фабрику «крипичиков» жизни — это экспериментальная установка мирового уровня, которая позволяет исследовать эволюцию органических молекул в нашей Галактике. Фабрика должна помочь в разгадке тайны зарождения жизни на Земле. Об этом сообщила пресс-служба Самарского университета.

Внутри установки можно воспроизводить условия различных уголков далекого космоса — от холодных молекулярных облаков до областей звездообразования. Температуру экспериментов допустимо менять в диапазоне от четырех до 350 градусов Кельвина (от -269 до +76ºC). Специальные насосы создают внутри основной камеры установки сверхвысокий вакуум — это позволяет избежать появления в рабочем пространстве каких-либо загрязнений или примесей.

С помощью этого оборудования можно в том числе моделировать воздействие космического ионизирующего излучения на внеземные и межзвездные льды.

«Проведены первые эксперименты и получены интересные результаты. Основной задачей первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду», — рассказал доцент кафедры физики Самарского университета имени Королёва Иван Антонов.



По его словам, в установке удалось наморозить метановый лед в виде очень тонкой пленки, менее одного микрометра толщиной, при температуре менее 5 Кельвинов (-268ºC). После облучения исследователи обнаружили во льду не только метан, но и молекулярный водород, воду, которая образовалась в реакциях метана с примесью кислорода, а также более высокомолекулярные углеводороды — пропан и бутан.

«Эксперименты показали, что установка работает как задумано. Полученные данные по механизмам образования пропана и бутана мы опубликуем и представим на научных конференциях», — отметил Иван Антонов.

Запущенная установка стала ключевым элементом Центра лабораторной астрофизики Самарского филиала Физического института имени П. Н. Лебедева РАН (СФ ФИАН).

https://наука.рф/news/fabrika-po-proizvodstvu-kirpichikov-zhizni-zarabotala-v-samare/

21.02.24 15.02.2024 Комсомольская правда. Космическая фабрика «кирпичиков» жизни: самарские ученые запустили установку для изучения эволюции молекул в Галактике

Для первых экспериментов был смоделирован свет молодых звезд. Фото: Самарский университет

В Самаре ученые достигли важного этапа в работе с уникальной экспериментальной установкой, ставшей космической фабрикой «кирпичиков» жизни. Им удалось ввести в эксплуатацию новую технологию мирового уровня, которая воспроизводит условия глубокого космоса. Об этом сообщает пресс-служба Самарского университета имени академика С.П. Королева.

Уникальная установка

Экспериментальное оборудование наиболее точно воссоздает условия глубокого космоса внутри камеры, что позволяет ученым изучать процессы формирования органических молекул. Они играют важную роль в понимании происхождения жизни на Земле, а также могут предоставить ключевые ответы на вопросы о зарождении жизни в нашей Галактике.

Космическая фабрика станет не только платформой для изучения химических процессов в космосе, но и позволит проводить испытания на радиационную прочность перспективных материалов, предназначенных для использования в обшивке космических кораблей и спутников. На этом оборудовании ученые могут наглядно демонстрировать воздействие условий космоса на различные материалы в реальном времени.

Первые эксперименты

Установка, созданная в самарском филиале Физического института, станет ключевым элементом Центра лабораторной астрофизики. Первые эксперименты уже принесли интересные результаты. Для них был смоделирован свет молодых звезд. Ученые продемонстрировали образование высокомолекулярных компонентов природного газа, таких как пропан и бутан, из метанового льда. Этот лед был создан в виде тонкой пленки при крайне низкой температуре –268 градусов Цельсия.

– Основной задачей этих первых экспериментов, было, во-первых, проверить, что установка работает так, как было задумано, а во-вторых, посмотреть под новым углом на химические процессы в метановом межзвездном льду, – рассказал доцент кафедры физики Самарского университета им. Королева Иван Антонов.

Ученые могут воссоздать условия реального космоса. / Фото: Самарский университет

Крохотное ледяное зеркальце

В сердце экспериментального комплекса расположено крохотное серебряное зеркало, покрытое тонким слоем льда, которое можно рассматривать как микроскопическую модель межзвездного пространства. В процессе экспериментов оно подвергается воздействию высокоэнергетических частиц. Они имитируют излучение, которое очень схоже с космическим. Это позволяет наблюдать за химическими реакциями, которые проходят в нашей Галактике.

Внутри установки расположено крохотное зеркальце / Фото: Самарский университет

Десять часов вместо одного миллиона лет

Важной особенностью установки является ее способность «ускорять» время протекания реакций. Например, десять часов облучения фотонами ледяной мишени на установке приблизительно эквивалентны одному миллиону лет облучения льда в условиях молекулярного облака в космосе.

Космическая фабрика «кирпичиков» жизни в Самаре открывает новые перспективы, предоставляя ученым уникальные возможности изучения ключевых аспектов эволюции органических молекул в межзвездном пространстве.

https://www.samara.kp.ru/daily/27567/4891867/

07.02.24 07.02.2024 РНФ. Российские ученые нашли новый класс материалов для создания безопасных аккумуляторов

Российские химики нашли новый класс материалов, который сможет ускорить разработку более безопасных в эксплуатации аккумуляторов для гаджетов, беспилотников и электромобилей. Более того, такие накопители энергии будут значительно дешевле существующих литий-ионных. Речь идет о мультивалентных металл-ионных батареях, для которых ученые подобрали 16 наиболее подходящих соединений. Эксперты уверены, что проделанные исследования существенно облегчают работу экспериментаторов по поиску новых материалов, однако необходима проверка на практике. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Physical Chemistry Chemical Physics.

Источник: СамГТУ/Зарина Беркимбаева

Общая схема проведенного теоретического анализа (справа вверху); результаты моделирования методом молекулярной динамики для перспективного цинк-ионного кристаллического проводника ZnLa3AlS7 (справа внизу) и его кристаллическая структура (слева).

Энергия без взрыва

Мобильные телефоны и ноутбуки, беспилотные аппараты и электромобили — всё это стало возможным благодаря появлению литий-ионных аккумуляторов. Но запасы лития в земной коре не бесконечны, что приводит к постепенному удорожанию сырья, а кроме того, аккумуляторы литий-ионного типа имеют ряд серьезных недостатков — например, они плохо работают на холоде и склонны к возгоранию. Поэтому ученые ищут более дешевые, надежные и мощные источники энергии.

Одна из возможных альтернатив — мультивалентные металл-ионные аккумуляторы, например, магний-, цинк- или алюминий-ионные. Такие накопители привлекают внимание исследователей благодаря низкой удельной стоимости хранения энергии, что делает их перспективными для электротранспорта и систем возобновляемой энергетики. Однако сегодня развитие мультивалентных металл-ионных аккумуляторов сдерживается из-за отсутствия ключевых элементов таких накопителей — ионных проводников. Ученые изСамарского государственного технического университета совместно с коллегами проанализировали свыше 1,5 тыс. химических соединений. Они пропустили материалы через систему теоретических фильтров, работающую по принципу «от простого к сложному». Для каждого вещества химики рассчитали определенные характеристики. В итоге они отобрали 16 соединений, которые могут быть эффективными ионными проводниками.

Среди отобранных веществ ученые выявили новый класс кристаллических материалов, которые обладают особенно высокой катионной проводимостью (способностью проводить электрический ток).

Руководитель проекта Кабанов Артем. Источник: Зарина Беркимбаева, СамГТУ

«Результаты нашей работы помогут ускорить разработку аккумуляторов нового поколения. С помощью теоретических методов мы смогли найти новые перспективные материалы. Наша следующая цель — синтезировать и экспериментально подтвердить характеристики найденных веществ, после чего можно будет собрать прототип», — рассказал «Известиям» руководитель гранта РНФ, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению (МНИЦТМ) СамГТУ Артем Кабанов.

В работе также приняли участие исследователи из Физического института им. П.Н. Лебедева РАН (Москва), Самарского государственного медицинского университета и Фрайбергской горной академии (Германия).

Вопрос совместимости

Металл-ионные аккумуляторы действительно перспективны, но материалы для них должны подходить друг другу, подтвердила «Известиям» эксперт рынка НТИ Энерджинет Екатерина Золотухина.

«Проблемы с изготовлением, кроме подбора материалов друг другу, состоит в том, что, как правило, либо электронная, либо ионная проводимость у них низкая. Кроме того, все твердые материалы, которые есть, склонны к фазовым переходам. На подбор удачных кристаллографических решений, изучение, подгонку этих соединений, проверку их на стабильность при циклировании и так далее может уйти несколько лет или десятилетий», — отметила она.

Судить о перспективности выявленных веществ без практической проверки, то есть синтеза, экспериментального измерения всех рассчитанных параметров, проверки воспроизводимости результатов, достаточно рано. Однако нельзя отрицать ценность подобных исследований, так как они существенно облегчают работу экспериментаторов по поиску новых материалов, которые можно было бы использовать в составе новых электрохимических накопителей, рассказал «Известиям» ведущий специалист отдела исследований и разработок ООО «Инэнерджи» Виктор Визгалов.

«Наиболее активно научно-техническое сообщество занимается натрий-ионными аккумуляторами, однако ведутся работы и в области алюминий-, цинк- и магний-ионных систем. Большинство этих аккумуляторов находятся на очень низком уровне готовности технологий и работы по этой тематике носят скорее поисковый характер», — пояснил эксперт.

По его словам, основным препятствием для создания таких батарей можно назвать отсутствие материалов положительного и отрицательного электрода, а также возможных вариантов жидкого или твердого электролита. В силу некоторых особенностей ученым еще предстоит найти возможные соединения, способные не только запасать энергию, но и обладающие достаточной для практического применения электронной и ионной проводимостью.

https://rscf.ru/news/presidential-program/rossiyskie-uchenye-nashli-novyy-klass-materialov-dlya-sozdaniya-bezopasnykh-akkumulyatorov/

07.02.24 07.02.2024 Научная Россия. Новый класс материалов ускорит разработку безопасных аккумуляторов

Химики нашли новый класс материалов, который сможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, такие накопители будут безопаснее в эксплуатации и значительно дешевле. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Physical Chemistry Chemical Physics.

Руководитель проекта Кабанов Артем. Источник Зарина Беркимбаева, СамГТУ

Способность компактно хранить большие количества энергии сильно изменила нашу повседневную жизнь. Мобильные телефоны и ноутбуки, беспилотные аппараты и электромобили — все это стало возможным благодаря появлению литий-ионных аккумуляторов. Но запасы лития в земной коре не бесконечны, что приводит к постепенному удорожанию сырья, а кроме того, аккумуляторы литий-ионного типа имеют ряд серьезных недостатков — например, они плохо работают на холоде и склонны к возгоранию. Поэтому ученые ищут более дешевые, надежные и мощные источники энергии.

Одна из возможных альтернатив — мультивалентные металл-ионные аккумуляторы, например, магний-, цинк- или алюминий-ионные. Такие накопители привлекают внимание исследователей благодаря низкой удельной стоимости хранения энергии, что делает их перспективными для электротранспорта и систем возобновляемой энергетики. Однако сегодня развитие мультивалентных металл-ионных аккумуляторов сдерживается из-за отсутствия ключевых элементов таких накопителей — ионных проводников, которые играют роль как электродов, так и твердых электролитов (веществ, в которых электропроводность обусловлена высокой подвижностью ионов).

Ученые из Самарского государственного технического университета (Самара) совместно с коллегами проанализировали свыше 1,5 тысячи химических соединений. Они пропустили материалы через систему теоретических фильтров, работающую по принципу «от простого к сложному». Для каждого соединения химики рассчитали характеристики свободного кристаллического пространства, энергию активации диффузии ионов, коэффициент диффузии и проводимость. В итоге они отобрали 16 соединений, которые могут быть эффективными ионными проводниками.

Среди отобранных соединений ученые выявили новый класс кристаллических материалов, которые обладают особенно высокой катионной проводимостью. Эти вещества относятся к структурному классу La3CuSiS7, и их ионная проводимость в 10-100 раз выше аналогов.

«Результаты нашей работы помогут ускорить разработку аккумуляторов нового поколения. С помощью теоретических методов мы смогли найти новые перспективные материалы. Наша следующая цель — синтезировать и экспериментально подтвердить характеристики найденных веществ, после чего можно будет собрать прототип аккумулятора», — рассказывает руководитель проекта, поддержанного грантом РНФ, Артем Кабанов, кандидат физико-математических наук, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению (МНИЦТМ) СамГТУ.

В работе также приняли участие исследователи из Физического института им. П.Н. Лебедева РАН (Москва), Самарского государственного медицинского университета (Самара) и Фрайбергской горной академии (Германия).

Информация и фото предоставлены пресс-службой Российского научного фонда

https://scientificrussia.ru/articles/novyj-klass-materialov-uskorit-razrabotku-bezopasnyh-akkumulatorov

Подкатегории