СМИ о нас

18.02.22 18.02.2022 ИА Красная Весна. Человечество не до конца понимает, откуда взялись звезды — российский физик

Звезды

Мы до сих пор не понимаем, как образовались звезды и первые квазары во Вселенной, заявил член-корреспондент РАН, директор Физического института имени П. Н. Лебедева РАН (ФИАН), доктор физико-математических наук Николай Колачевский в интервью изданию «Научная Россия», опубликованном 17 февраля.

«Квазары, или сверхмассивные черные дыры в центрах галактик, с массой 109 масс Солнца и больше, то есть миллиарды масс Солнца, крайне интересны. Их загадка заключается в том, что эти объекты образовались слишком рано по отношению к моменту Большого взрыва», — отметил Колачевский.

По его словам, последние наблюдения показывают, что самые молодые квазары имеют возраст от десяти до ста тысяч лет. Физик отмечает, что это удивительно мало, и астрономам «не очень понятно, как они образовались».

«Вопрос звездообразования довольно сложный и полностью не изучен. Мы не знаем до конца, как образовывались первые звезды, и как они образуются сейчас, какую роль в этом процессе играют магнитные поля, джеты и т. д.», — подчеркнул Колачевский.

Он также указал, что черные дыры согласно исследованиям иногда стимулируют рождение звезд.

«Парадоксально ведь, казалось бы, они разрывать их должны или поглощать, но мы видим процессы, которые, напротив, приводят к звездообразованию. Так рентгеновское излучение, возникающее в результате аккреции вещества на черную дыру, способствует образованию молекулярного водорода, что в свою очередь способствует образованию звезд», — заключил ученый.

https://rossaprimavera.ru/news/78c7f127

28.02.22 28.02.2022 Коммерсант. Физики повторили сюжет из Терминатора-2 в лаборатории

Помните сцену из «Терминатора-2», где металлическая капля, двигаясь по асфальту как живая, подтекает к ногам робота-убийцы Т-1000 и сливается с ним? Ученые из Физического института имени Лебедева (ФИАН) увидели похожую картину в своей лаборатории: в их эксперименте капли жидкости самопроизвольно перетекали с места на место по поверхности с микроструктурами, «вырезанными» на них с помощью лазера. Такие поверхности могут использоваться в микрофлюидных биочипах и медицинских экспресс-тестах, которые легко умещаются в кармане.

 

Фото: Валерий Мельников, Коммерсантъ

«Обычно капля, упавшая на ровную поверхность, остается на месте. Мы заставили ее двигаться — за счет градиента сил поверхностного натяжения. С помощью лазера мы создали на поверхности микроструктуры с нарастанием ее гидрофильности (смачиваемости), и капли двигаются по ним в сторону, где гидрофильность максимальна. Такой “горизонтальный насос”, например, позволит разделять жидкости с разным коэффициентом поверхностного натяжения, упростить биочипы и микрофлюидные устройства»,— говорит соавтор исследования Сергей Кудряшов, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН.

Технология перекачки воды с помощью энергии поверхностного натяжения давно изобретена в живой природе. Техасская рогатая ящерица (Phrynosoma cornutum), живущая в пустынях Северной Америки, научилась собирать и перемещать воду, которая конденсируется по ночам на ее теле. Сеть открытых капиллярных каналов, образованных чешуйками, заставляет воду перетекать прямо к ее рту, и этот эффект описывали германские и австрийские ученые.

Чтобы воспроизвести его эффект в лаборатории, Кудряшов и его коллеги решили попробовать создать на поверхности градиент поверхностной энергии (натяжения), то есть сделать так, чтобы степень гидрофобности постепенно снижалась вдоль поверхности от точки к точке в заданном направлении. К сожалению, это нельзя сделать, просто уменьшая толщину слоя гидрофобного покрытия на гидрофильном. Сила поверхностного натяжения очень короткодействующая, чтобы «выключить» гидрофильность металла, на него достаточно нанести слой пластика толщиной в одну-две молекулы.

«Можно попробовать сделать это химическим способом, то есть создав участки с химически разным покрытием с разной гидрофобностью, но эта поверхность будет очень капризной, потому что любая пыль, любое органическое загрязнение сразу меняет показатель гидрофобности, и такую поверхность трудно отмыть, чтобы восстановить ее нужный уровень»,— объясняет Кудряшов.

Поэтому ученые ФИАН решили воспользоваться тем, что у капли жидкости довольно большая площадь и она «усредняет» показатель гидрофобности на участках с гидрофобным пластиком и с гидрофильным металлом, где пластик удален лазером. Иначе говоря, капля не сможет отличить поверхность с одним показателем гидрофобности в каждой точке от «шахматной доски» той же площади с разными показателями в каждой клеточке, если среднее значение будет одинаковым.

Для эксперимента ученые покрыли стальные пластины размером 5 х 5 см миллиметровым гидрофобным полимерным покрытием на основе силоксана. Затем при помощи лазера наносекундными импульсами они прорезали слой покрытия до металла, создавая ряды канавок длиной 5 мм и шириной около 100 микрон.

Затем повторной обработкой лазером ученые модифицировали их, расширив их в разной степени. Так на стальной пластинке появились четыре участка с разными показателями гидрофобности — углом контакта смачивания, то есть углом между поверхностью и условно касательной к поверхности капли воды на ней. На гидрофобной поверхности капля воды растекается меньше, поэтому угол смачивания будет больше. На гидрофильной, наоборот, угол будет меньше, так как капля растекается больше. Угол смачивания на четырех участках варьировался от 46 до 13 градусов.

Затем ученые капали водой на разные участки и наблюдали за ее движением.

Капля воды объемом 5 мкл в эксперименте самопроизвольно перемещалась от гидрофобных участков к гидрофильным. Быстрее всего капля двигалась между первым и вторым участками — в этом месте ее скорость достигала 92 мм/сек.

«Мы сделали такой “горизонтальный водопад”, где жидкость двигается не за счет силы тяжести, а за счет энергии поверхностного натяжения. На гидрофобных участках энергия поверхностного натяжения выше, на гидрофильных меньше, и эта разность потенциалов превращается в кинетическую энергию движения»,— говорит Кудряшов.

По его словам, такой «водопад» может быть достаточно длинным — несколько десятков сантиметров. «Главное, чтобы граница между участками с разными углами смачивания была не слишком заметной, чтобы вязкое трение не остановило каплю»,— объясняет он.

Ученые отмечают, что такие микроструктурированные поверхности могут найти широкое применение в разработке микрофлюидных устройств — бурно развивающейся области, которая уже дала десятки компактных устройств для исследования химического состава воздуха и воды, диагностических медицинских тестов.

Кудряшов подчеркивает, что в эксперименте использовались широко распространенные лазеры. «Это очень доступная технология. Лазер очень простой, с помощью таких делается маркировка, подписываются металлические таблички. Это очень простые и доступные системы, не требуют особых знаний для обслуживания. Поэтому, если при их помощи получится делать микрофлюидные чипы, это будет очень выгодно».

Использованы материалы статьи «Microfluidic Water Flow on Laser-patterned MicroCoat® - Coated Steel Surface»; I. V. Krylach, M. I. Fokin, S. I. Kudryashov, A. V. Veniaminov, R. O. Olekhnovich, V. E. Sitnikova, M. K. Moskvin, L. N. Borodina, N. N. Shchedrina, S. N. Shelygina, A. A. Rudenko, M. V. Uspenskaya; журнал Applied Surface Science, номер выйдет в апреле 2022 г.

https://www.kommersant.ru/doc/5237728

 

28.02.22 28.02.2022 Атомная Энергия. В России создан прототип квантового компьютера на ионах иттербия

 

Российские ученые получили первые значимые результаты на пути создания квантового процессора на базе ионов. Это одно из направлений, которое курирует «Росатом» в рамках дорожной карты «Квантовые технологии».

«Примерно за полтора года интенсивной работы нам удалось собрать систему на ионах иттербия, продемонстрировать двухкубитные операции с достоверностью 66 % и показать полный набор кудитных операций с достоверностью порядка 85 %», — ​заявил директор Физического института Академии наук (ФИАН) Николай Колачевский на заседании научного совета РАН «Квантовые технологии» в декабре прошлого года. Разберемся, что сказал ученый.

Кубит — ​это минимальная единица информации квантового процессора. Если бит (единица информации обычного компьютера) может принимать только два значения — ​0 или 1, то кубит может находиться еще и в суперпозиции: быть одновременно и в значении 0, и в значении 1.

Физически кубит — ​это система с двумя энергетическими уровнями, под одним из которых понимается логический 0, под другим — ​1. Создать такую систему можно на разных основах. В рамках дорожной карты «Квантовые технологии» разрабатывают кубиты на базе сверхпроводников, холодных атомов, фотонов и ионов. В совместной лаборатории ФИАНа и Российского квантового центра (РКЦ) экспериментируют с ионами иттербия, они считаются наиболее подходящими для создания квантового компьютера.

Кудит — ​это кубит с тремя и более энергетическими уровнями. Его можно представить как дом с несколькими этажами.

«Переход с одного энергетического уровня на другой — ​это изменение состояния электронной оболочки иона. При этом изменяется волновая функция электронной оболочки иона», — ​комментирует научный сотрудник ФИАНа Илья Семериков.

Именно в операциях с кудитами и заключается главное достижение лаборатории. Ученые работали с двумя куквартами. Кукварт — ​это кудит, способный одновременно находиться в четырех электронных состояниях. В итоге был создан процессор, эквивалентный четырехкубитному квантовому компьютеру — ​системе из четырех ионов с двумя энергетическими состояниями в каждом.

Чтобы создать из атома иттербия ион, металл испаряют, из паров выбирают изотопы иттербий‑171 и воздействуют на них лазером, чтобы удалить с внешней орбитали один электрон. Ионы помещают в ионную ловушку — ​систему электродов, которая создает быстро колеблющееся электромагнитное поле. Вся система находится в вакууме.

Управляют ионами с помощью лазеров. Сначала лазерные импульсы охлаждают ионы практически до абсолютного нуля (–273,15 °C). Для выполнения квантовых алгоритмов используется другой лазер, с очень узким спектром — ​порядка 1 Гц. Ученые предельно точно контролируют, куда светит лазер, его частоту, интенсивность и фазу. Изменяя эти параметры, можно управлять квантовыми состояниями иона.

Каждый энергетический уровень кукварта можно представить как состояние пары кубитов: первый — ​00, второй — ​01, третий — ​10, четвертый — ​11. «Если взять пару ионов с энергетическими состояниями 1 и 4, то состояние эквивалентного квантового регистра из четырех кубитов будет 0011, а у пары с состояниями 2 и 3 состояние регистра будет 0110», — ​комментирует Илья Семериков. На этом компьютере уже можно реализовывать простейшие алгоритмы, в частности Дойча — ​Йожи и Гровера. Первый применяется для определения типа функции (константная или сбалансированная), второй — ​для быстрого поиска в неупорядоченной базе данных.

На заседании научного совета РАН Николай Колачевский обозначил важную проблему, которую предстоит решить, — ​перепутывание кубитов. Это процесс, в ходе которого состояние одного из ионов изменяется в зависимости от состояния другого.

«Сам по себе факт, что мы можем загрузить 5, 10 или 20 ионов в ловушку, не значит, что мы сделали 5-, 10- или 20‑кубитный компьютер. Вопрос, можем ли мы делать с ними совместные операции», — ​сказал Николай Колачевский.

Российским ученым удалось перепутать два кукварта по методу Мельмера — ​Серенсена, предложенному в начале 2000‑х. Он основан на возбуждении колебаний ионов в ловушке под действием лазера. Совместные колебания ионов в ловушке — ​это шина данных квантовой информации между частицами.

Еще одна проблема — ​индивидуальная адресация к каждому иону. Расстояние между ионами в ловушке — ​всего 4–5 мкм, поэтому сложно посветить лазером на один, не задев другой. Сотрудникам лаборатории это удалось с двумя и четырьмя ионами.

Третья проблема — ​создание облачной платформы и организация доступа с ее помощью к прототипу квантового процессора. Первые дистанционные эксперименты уже проводятся, но для полноценной интеграции требуется окончательное согласование интерфейсов. Работы запланированы на этот год, в них будут участвовать специалисты «Росатома» и РКЦ.

Четвертая проблема — ​повышение достоверности операций. Процент достоверности, или фиделити, — ​это показатель вероятности корректного вычисления. Он определяется после серии экспериментов. Данные обрабатываются, усредняются, и вычисляется достоверность.

«Пока хвалиться особенно нечем, потому что все это уже сделано зарубежными коллегами, правда, на другой физической системе — ​на кальции, но довольно давно, — ​признал Николай Колачевский. — ​Впрочем, учитывая наши возможности и то, что это первый подход к снаряду, получен, на мой взгляд, обнадеживающий результат, который позволяет взяться за оптимизацию качества операций».

Для сравнения, команды компаний IonQ и Quantinuum — ​лидеров в создании квантовых компьютеров на ионах — ​уже работают с 10- и 20‑ионными кубитами в каждом процессоре, и достоверность двухкубитных операций у них превысила 98 %.

«Платформа на ионах демонстрирует одни из самых интересных результатов, что особенно примечательно, так как пять лет назад ионы не считались приоритетным направлением развития. Для нас это первый значимый результат в работе над дорожной картой по квантовым вычислениям», — ​отмечает руководитель проектного офиса по квантовым технологиям «Росатома» Руслан Юнусов.

Источник: Страна Росатом

https://www.atomic-energy.ru/news/2022/02/28/122348

26.02.22 26.02.2022 TezNet. Российские физики заставили воду «ползти» по горизонтальной плоскости

 

В лаборатории Физического института имени Лебедева (ФИАН) ученым удалось воссоздать картину, очень похожую на одну из сцен боевика «Терминатор 2». Так, ученые заставили капли воды самопроизвольно «ползти» по горизонтальной плоскости. Для этого они создали на твердой поверхности при помощи лазера специальные вырезанные микроструктуры.

«В обычных условиях капля воды, которая упала на ровную поверхность, остается неподвижной. Нам удалось ее заставить двигаться, используя эффект градиента сил поверхностного натяжения. Воспользовавшись лазером, на твердой поверхности мы нанесли микроструктуру таким образом, чтобы она нарастала по показателю смачиваемости – так называемой гидрофильности. После этого капли двигаются в сторону структуры с максимальной гидрофильностью от “гидрофобных” участков. Этот “горизонтальный насос”, к примеру, поможет разделить жидкости, обладающие разными коэффициентами поверхностного натяжения. Используя данный эффект, мы сможем упростить микрофлюидные устройства и биочипы для медицинских целей», – рассказал Сергей Кудряшов, заведующий лабораторией лазерной нанофизики и биомедицины ФИАН, соавтор исследования.

Природа уже много веков назад изобрела «горизонтальный насос». Например, техасские рогатые ящерицы, обитающие в пустынных местностях Северной Америки, могут собирать, а затем и перемещать воду ко рту, которая конденсируется на поверхности их тела в ночное время. В данном случае, в роли «вырезанной микроструктуры» выступают сети капиллярных каналов, которые образуют чешуйки ящериц. Через эти капиллярные микроканалы с поверхности тела вода сама перетекает в рот пресмыкающихся. 

По словам ученых, эффект «горизонтального насоса» можно широко использовать при изготовлении микрофлюидных чипов для детального исследования состава воды и воздуха, а также в производстве диагностических медицинских тестов.

Источник фото: news.mail.ru

https://teznet.ru/novosti/neobichnoe/rossijskie-fiziki-zastavili-vodu-polzti-po-gorizontalnoj-ploskosti-8224.html

25.02.22 25.02.2022 Хайтек+. Физики воссоздали способности Т-1000 из Терминатора-2 в лаборатории

Сотрудники Физического института имени Лебедева провели интересный эксперимент с каплями жидкости и специальной поверхностью с микроструктурами. Он напоминает знаменитую сцену из фильма «Терминатор-2». Об этом сообщает «Хайтек» со ссылкой на пресс-службу вуза.

Одна из самых известных сцен «Терминатора-2» это та, где металлическая капля, двигаясь по асфальту как живая, подтекает к ногам робота-убийцы Т-1000 и сливается с ним. Ученые из Физического института имени Лебедева (ФИАН) увидели похожую картину в своей лаборатории и воссоздали способности робота из «Терминатора-2».

В их эксперименте капли жидкости самопроизвольно перетекали с места на место по поверхности с микроструктурами, «вырезанными» на них с помощью лазера. Такие поверхности могут использоваться в микрофлюидных биочипах и медицинских экспресс-тестах, которые легко умещаются в кармане. Статья о результатах эксперимента опубликована в журнале Applied Surface Science.

«Обычно капля, упавшая на ровную поверхность, остается на месте. Мы заставили ее двигаться — за счет градиента сил поверхностного натяжения. С помощью лазера мы создали на поверхности микроструктуры с нарастанием ее гидрофильности (смачиваемости), и капли двигаются по ним в сторону, где гидрофильность максимальна. Такой „горизонтальный насос“, например, позволит разделять жидкости с разным коэффициентом поверхностного натяжения, упростить биочипы и микрофлюидные устройства», — объясняет соавтор исследования Сергей Кудряшов, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН.

Технология перекачки воды с помощью энергии поверхностного натяжения давно изобретена в живой природе. Техасская рогатая ящерица (Phrynosoma cornutum), живущая в пустынях Северной Америки, научилась собирать и перемещать воду, которая конденсируется по ночам на ее теле. Сеть открытых капиллярных каналов, образованных чешуйками, заставляет воду перетекать прямо к ее рту, и этот эффект описывали германские и австрийские ученые.

Чтобы воспроизвести его в лаборатории, Кудряшов и его коллеги попробовали создать на поверхности градиент поверхностной энергии (натяжения) — то есть сделать так, чтобы степень гидрофобности постепенно снижалась вдоль поверхности от точки к точке в заданном направлении. К сожалению, это нельзя сделать просто уменьшая толщину слоя гидрофобного покрытия на гидрофильном. Сила поверхностного натяжения очень короткодействующая, чтобы «выключить» гидрофильность металла, на него достаточно нанести слой пластика толщиной в одну-две молекулы

«Можно попробовать сделать это химическим способом, то есть создав участки с химически разным покрытием с разной гидрофобностью, но эта поверхность будет очень капризной, потому что любая пыль, любое органическое загрязнение сразу меняет показатель гидрофобности, и такую поверхность трудно отмыть, чтобы восстановить ее нужный уровень», — объясняет Кудряшов.

Поэтому ученые ФИАНа решили воспользоваться тем, что у капли жидкости довольно большая площадь и она «усредняет» показатель гидрофобности на участках с гидрофобным пластиком и с гидрофильным металлом, где пластик удален лазером. Иначе говоря, капля не сможет отличить поверхность с одним показателем гидрофобности в каждой точке от «шахматной доски» той же площади с разными показателями в каждой клеточке, если среднее значение будет одинаковым.

Для эксперимента ученые покрыли стальные пластины размером 5×5 см с миллиметровым гидрофобным полимерным покрытием на основе силоксана. Затем при помощи лазера наносекундными импульсами они прорезали слой покрытия до металла, создавая ряды канавок длиной 5 мм и шириной около 100 микрон.

Затем повторной обработкой лазером ученые модифицировали их, расширив их в разной степени. Так на стальной пластинке появились четыре участка с разными показателями гидрофобности — углом контакта смачивания, то есть углом между поверхностью и условно касательной к поверхности капли воды на ней. На гидрофобной поверхности капля воды растекается меньше, поэтому угол смачивания будет больше. На гидрофильной, наоборот, угол будет меньше, так как капля растекается больше. Угол смачивания на четырех участках варьировался от 46 до 13 градусов.

 

Движение капли воды в эксперименте — сразу после падения она перемещается вправо. Предоставлено: ФИАН

Затем ученые капали водой на разные участки и наблюдали за ее движением. Капля воды объемом пять микролитров в эксперименте самопроизвольно перемещалась от гидрофобных участков к гидрофильным. Быстрее всего капля двигалась между первым и вторым участками — в этом месте ее скорость достигала 92 мм в секунду.

Ученые отмечают, что такие микроструктурированные поверхности могут найти широкое применение в разработке микрофлюидных устройств — бурно развивающейся области, которая уже дала десятки компактных устройств для исследования химического состава воздуха и воды, диагностических медицинских тестов.

https://hightech.fm/2022/02/25/the-terminator

25.02.22 25.02.2022 ФHИ XXI век. Тяжёлая вода улучшила светимость химического комплекса
Российские и итальянские исследователи синтезировали комплексы химического элемента диспрозия, которые при облучении способны светиться. Также химики выяснили, что эти люминесцентные характеристики можно улучшить путём замены молекул обычной воды в их составе на молекулы «тяжёлой», а также замены атомов диспрозия на их люминесцирующий аналог. Исследование осуществлялось при поддержке Российского научного фонда (РНФ).

Фото: Дмитрий Христолюбов

Комплексы диспрозия, изученные учёными, имеют лиганд из класса гетероциклических дикетонов. Такой лиганд функционирует как своего рода антенна: поглощает внешнее излучение, передавая его на лантаноид. Последний же, в свою очередь, излучает собственный свет. Поэтому изученные комплексы диспрозия могут преобразовывать излучение в собственное, но с другой длиной волны.

Однако в этом процессе происходит частичное тушение люминесценции. Чтобы исправить этот недостаток, учёные при синтезе добавили в комплексы диспрозия гадолиний. Светиться этот элемент не способен. Также химики предположили, что если заменить обычную воду в составе диспрозия на «тяжёлую» (в которой место водорода занимает дейтерий), то свойства комплексов улучшатся .

И действительно — после замены люминесценция комплексов была вдвое ярче и затухала в три раза медленнее. У соединений, в которых часть диспрозия была заменена на гадолиний, скорость затухания также уменьшилась, однако эффективность свечения при этом снизилась.

«Предложенные нами подходы помогут при разработке новых источников белого света, в частности органических светоизлучающих светодиодов. В дальнейшем мы планируем провести подобные эксперименты и с другими лантаноидами», — рассказывает руководитель проекта по гранту РНФ Илья Тайдаков, доктор химических наук, руководитель группы «Молекулярная спектроскопия люминесцентных материалов» ФИАН.

https://21mm.ru/news/nauka/tyazhyelaya-voda-uluchshila-svetimost-khimicheskogo-kompleksa/

25.02.22 25.02.2022 Страна Росатом. Создан прототип квантового компьютера на ионах иттербия

 

Российские ученые получили первые значимые результаты на пути создания квантового процессора на базе ионов. Это одно из направлений, которое курирует «Росатом» в рамках дорожной карты «Квантовые технологии».

«Примерно за полтора года интенсивной работы нам удалось собрать систему на ионах иттербия, продемонстрировать двухкубитные операции с достоверностью 66 % и показать полный набор кудитных операций с достоверностью порядка 85 %», — ​заявил директор Физического института Академии наук (ФИАН) Николай Колачевский на заседании научного совета РАН «Квантовые технологии» в декабре прошлого года. Разберемся, что сказал ученый.

Кубит, кудит

Кубит — ​это минимальная единица информации квантового процессора. Если бит (единица информации обычного компьютера) может принимать только два значения — ​0 или 1, то кубит может находиться еще и в суперпозиции: быть одновременно и в значении 0, и в значении 1.

Физически кубит — ​это система с двумя энергетическими уровнями, под одним из которых понимается логический 0, под другим — ​1. Создать такую систему можно на разных основах. В рамках дорожной карты «Квантовые технологии» разрабатывают кубиты на базе сверхпроводников, холодных атомов, фотонов и ионов. В совместной лаборатории ФИАНа и Российского квантового центра (РКЦ) экспериментируют с ионами иттербия, они считаются наиболее подходящими для создания квантового компьютера.

Кудит — ​это кубит с тремя и более энергетическими уровнями. Его можно представить как дом с несколькими этажами. «Переход с одного энергетического уровня на другой — ​это изменение состояния электронной оболочки иона. При этом изменяется волновая функция электронной оболочки иона», — ​комментирует научный сотрудник ФИАНа Илья Семериков.

Именно в операциях с кудитами и заключается главное достижение лаборатории. Ученые работали с двумя куквартами. Кукварт — ​это кудит, способный одновременно находиться в четырех электронных состояниях. В итоге был создан процессор, эквивалентный четырехкубитному квантовому компьютеру — ​системе из четырех ионов с двумя энергетическими состояниями в каждом.

Как это работает

Чтобы создать из атома иттербия ион, металл испаряют, из паров выбирают изотопы иттербий‑171 и воздействуют на них лазером, чтобы удалить с внешней орбитали один электрон. Ионы помещают в ионную ловушку — ​систему электродов, которая создает быстро колеблющееся электромагнитное поле. Вся система находится в вакууме.

Управляют ионами с помощью лазеров. Сначала лазерные импульсы охлаждают ионы практически до абсолютного нуля (–273,15 °C). Для выполнения квантовых алгоритмов используется другой лазер, с очень узким спектром — ​порядка 1 Гц. Ученые предельно точно контролируют, куда светит лазер, его частоту, интенсивность и фазу. Изменяя эти параметры, можно управлять квантовыми состояниями иона.

Каждый энергетический уровень кукварта можно представить как состояние пары кубитов: первый — ​00, второй — ​01, третий — ​10, четвертый — ​11. «Если взять пару ионов с энергетическими состояниями 1 и 4, то состояние эквивалентного квантового регистра из четырех кубитов будет 0011, а у пары с состояниями 2 и 3 состояние регистра будет 0110», — ​комментирует Илья Семериков. На этом компьютере уже можно реализовывать простейшие алгоритмы, в частности Дойча — ​Йожи и Гровера. Первый применяется для определения типа функции (константная или сбалансированная), второй — ​для быстрого поиска в неупорядоченной базе данных.

Есть проблемы

На заседании научного совета РАН Николай Колачевский обозначил важную проблему, которую предстоит решить, — ​перепутывание кубитов. Это процесс, в ходе которого состояние одного из ионов изменяется в зависимости от состояния другого. «Сам по себе факт, что мы можем загрузить 5, 10 или 20 ионов в ловушку, не значит, что мы сделали 5-, 10- или 20‑кубитный компьютер. Вопрос, можем ли мы делать с ними совместные операции», — ​сказал Николай Колачевский. Российским ученым удалось перепутать два кукварта по методу Мельмера — ​Серенсена, предложенному в начале 2000‑х. Он основан на возбуждении колебаний ионов в ловушке под действием лазера. Совместные колебания ионов в ловушке — ​это шина данных квантовой информации между частицами.

Еще одна проблема — ​индивидуальная адресация к каждому иону. Расстояние между ионами в ловушке — ​всего 4–5 мкм, поэтому сложно посветить лазером на один, не задев другой. Сотрудникам лаборатории это удалось с двумя и четырьмя ионами.

Третья проблема — ​создание облачной платформы и организация доступа с ее помощью к прототипу квантового процессора. Первые дистанционные эксперименты уже проводятся, но для полноценной интеграции требуется окончательное согласование интерфейсов. Работы запланированы на этот год, в них будут участвовать специалисты «Росатома» и РКЦ.

Четвертая проблема — ​повышение достоверности операций. Процент достоверности, или фиделити, — ​это показатель вероятности корректного вычисления. Он определяется после серии экспериментов. Данные обрабатываются, усредняются, и вычисляется достоверность. «Пока хвалиться особенно нечем, потому что все это уже сделано зарубежными коллегами, правда, на другой физической системе — ​на кальции, но довольно давно, — ​признал Николай Колачевский. — ​Впрочем, учитывая наши возможности и то, что это первый подход к снаряду, получен, на мой взгляд, обнадеживающий результат, который позволяет взяться за оптимизацию качества операций». Для сравнения, команды компаний IonQ и Quantinuum — ​лидеров в создании квантовых компьютеров на ионах — ​уже работают с 10- и 20‑ионными кубитами в каждом процессоре, и достоверность двухкубитных операций у них превысила 98 %.

«Платформа на ионах демонстрирует одни из самых интересных результатов, что особенно примечательно, так как пять лет назад ионы не считались приоритетным направлением развития. Для нас это первый значимый результат в работе над дорожной картой по квантовым вычислениям», — ​отмечает руководитель проектного офиса по квантовым технологиям «Росатома» Руслан Юнусов.

СПРАВКА

В 2021 году «Росатом» выделил на развитие квантовых технологий и создание исследовательской инфраструктуры более 6 млрд руб­лей. На эти деньги купили оборудование и другие компоненты для оснащения лабораторий. В общей сложности до 2024 года в направление будет вложено более 23 млрд руб­лей из бюджетных и внебюджетных источников. К концу 2024 года должен быть построен универсальный квантовый компьютер с облачным доступом.

https://strana-rosatom.ru/2022/02/25/sozdan-prototip-kvantovogo-kompjute/

 

 

 

 

25.02.22 25.02.2022 Mail.Ru. Физики заставили каплю ползти по горизонтальной поверхности

Ученые из Физического института имени Лебедева (ФИАН) создали в своей лаборатории картину, похожую на сцену из фильма «Терминатор-2»: в их эксперименте капли жидкости самопроизвольно перетекали с места на место по поверхности с микроструктурами, «вырезанными» на них с помощью лазера.

Источник: Depositphotos

Такие поверхности могут использоваться в микрофлюидных биочипах и медицинских экспресс-тестах, которые легко умещаются в кармане. Статья о результатах эксперимента опубликована в журнале Applied Surface Science.

«Обычно капля, упавшая на ровную поверхность, остается на месте. Мы заставили ее двигаться — за счет градиента сил поверхностного натяжения. С помощью лазера мы создали на поверхности микроструктуры с нарастанием ее гидрофильности (смачиваемости), и капли двигаются по ним в сторону, где гидрофильность максимальна. Такой “горизонтальный насос”, например, позволит разделять жидкости с разным коэффициентом поверхностного натяжения, упростить биочипы и микрофлюидные устройства», — говорит соавтор исследования Сергей Кудряшов, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН.

Технология перекачки воды с помощью энергии поверхностного натяжения давно изобретена в живой природе. Техасская рогатая ящерица (Phrynosoma cornutum), живущая в пустынях Северной Америки, научилась собирать и перемещать воду, которая конденсируется по ночам на ее теле. Сеть открытых капиллярных каналов, образованных чешуйками, заставляет воду перетекать прямо к ее рту, и этот эффект описывали германские и австрийские ученые.

Чтобы воспроизвести его эффект в лаборатории, Кудряшов и его коллеги решили попробовать создать на поверхности градиент поверхностной энергии (натяжения) — то есть сделать так, чтобы степень гидрофобности постепенно снижалась вдоль поверхности от точки к точке в заданном направлении.

К сожалению, это нельзя сделать просто уменьшая толщину слоя гидрофобного покрытия на гидрофильном. Сила поверхностного натяжения очень короткодействующая, чтобы «выключить» гидрофильность металла, на него достаточно нанести слой пластика толщиной в одну-две молекулы.

«Можно попробовать сделать это химическим способом, то есть создав участки с химически разным покрытием с разной гидрофобностью, но эта поверхность будет очень капризной, потому что любая пыль, любое органическое загрязнение сразу меняет показатель гидрофобности, и такую поверхность трудно отмыть, чтобы восстановить ее нужный уровень», — объясняет Кудряшов.

Поэтому ученые ФИАНа решили воспользоваться тем, что у капли жидкости довольно большая площадь и она «усредняет» показатель гидрофобности на участках с гидрофобным пластиком и с гидрофильным металлом, где пластик удален лазером. Иначе говоря, капля не сможет отличить поверхность с одним показателем гидрофобности в каждой точке от «шахматной доски» той же площади с разными показателями в каждой клеточке, если среднее значение будет одинаковым.

Для эксперимента ученые покрыли стальные пластины размером пять на пять сантиметров миллиметровым гидрофобным полимерным покрытием на основе силоксана. Затем при помощи лазера наносекундными импульсами они прорезали слой покрытия до металла, создавая ряды канавок длиной пять миллиметров и шириной около 100 микрон.

Затем повторной обработкой лазером ученые модифицировали их, расширив их в разной степени. Так на стальной пластинке появились четыре участка с разными показателями гидрофобности — углом контакта смачивания, то есть углом между поверхностью и условно касательной к поверхности капли воды на ней. На гидрофобной поверхности капля воды растекается меньше, поэтому угол смачивания будет больше. На гидрофильной, наоборот, угол будет меньше, так как капля растекается больше. Угол смачивания на четырех участках варьировался от 46 до 13 градусов.

Затем ученые капали водой на разные участки и наблюдали за ее движением.

Капля воды объемом пять микролитров в эксперименте самопроизвольно перемещалась от гидрофобных участков к гидрофильным. Быстрее всего капля двигалась между первым и вторым участками — в этом месте ее скорость достигала 92 миллиметров в секунду.

«Мы сделали такой “горизонтальный водопад”, где жидкость двигается не за счет силы тяжести, а за счет энергии поверхностного натяжения. На гидрофобных участках энергия поверхностного натяжения выше, на гидрофильных — меньше, и эта разность потенциалов превращается в кинетическую энергию движения», — говорит Кудряшов.

По его словам, такой «водопад» может быть достаточно длинным — несколько десятков сантиметров. «Главное, чтобы граница между участками с разными углами смачивания была не слишком заметной, чтобы вязкое трение не остановило каплю», — объясняет он.

Ученые отмечают, что такие микроструктурированные поверхности могут найти широкое применение в разработке микрофлюидных устройств — бурно развивающейся области, которая уже дала десятки компактных устройств для исследования химического состава воздуха и воды, диагностических медицинских тестов.

Кудряшов подчеркивает, что в эксперименте использовались широко распространенные лазеры. «Это очень доступная технология. Лазер очень простой, с помощью таких делается маркировка, подписываются металлические таблички. Это очень простые и доступные системы, не требуют особых знаний для обслуживания. Поэтому, если при их помощи получится делать микрофлюидные чипы, это будет очень выгодно».

Источник: Индикатор

https://news.mail.ru/society/50204977/

 

25.02.22 25.02.2022 InScience. Ученые создали горизонтальный водопад

Физический институт имени П.Н. Лебедева РАН

Ученые из Физического института имени Лебедева поставили эксперимент, в котором капли жидкости самопроизвольно перетекали с места на место по поверхности с микроструктурами, «вырезанными» на них с помощью лазера. Такие поверхности могут использоваться в микрофлюидных биочипах и медицинских экспресс-тестах, которые легко умещаются в кармане. Статья опубликована в журнале Applied Surface Science.

«Обычно капля, упавшая на ровную поверхность, остается на месте. Мы заставили ее двигаться — за счет градиента сил поверхностного натяжения. С помощью лазера мы создали на поверхности микроструктуры с нарастанием ее гидрофильности (смачиваемости), и капли двигаются по ним в сторону, где гидрофильность максимальна. Такой “горизонтальный насос”, например, позволит разделять жидкости с разным коэффициентом поверхностного натяжения, упростить биочипы и микрофлюидные устройства», — говорит соавтор исследования Сергей Кудряшов.

Подобная технология встречается в природе. Например, техасская рогатая ящерица умеет собирать и перемещать воду, которая конденсируется по ночам на ее теле. Сеть открытых капиллярных каналов, образованных чешуйками, заставляет воду перетекать прямо ко рту ящерицы.

Ученые попытались воспроизвести этот эффект, создав на поверхности градиент поверхностной энергии — сделав так, чтобы степень гидрофобности постепенно снижалась вдоль поверхности в заданном направлении. Однако это нельзя сделать, просто уменьшая толщину слоя гидрофобного покрытия. Сила поверхностного натяжения очень короткодействующая, и, чтобы «выключить» гидрофильность металла, на него достаточно нанести слой пластика толщиной в одну-две молекулы. Ученые воспользовались тем, что у капли жидкости довольно большая площадь, и она «усредняет» показатель гидрофобности на участках с гидрофобным пластиком и с гидрофильным металлом, где пластик удален лазером. Капля не сможет отличить поверхность с одним показателем гидрофобности в каждой точке от «шахматной доски» той же площади с разными показателями в каждой клеточке, если среднее значение будет одинаковым.

В экспериментах ученые покрывали стальные пластины размером пять на пять сантиметров миллиметровым гидрофобным полимерным покрытием на основе силоксана. Затем с помощью лазера наносекундными импульсами они прорезали слой покрытия до металла, создавая ряды канавок длиной 5 мм и шириной около 100 микрон. С помощью повторной лазерной обработки ученые расширили их. Так на стальной пластинке появились четыре участка с разными показателями гидрофобности — углом между поверхностью и условно касательной к поверхности капли воды на ней.

В экспериментах капля воды самопроизвольно перемещалась от гидрофобных участков к гидрофильным. По словам ученых, длина такого «водопада» может достигать десятков сантиметров. Подобные микроструктурированные поверхности могут найти применение при разработке микрофлюидных устройств.

https://inscience.news/ru/article/russian-science/9006

 

 

 

 

25.02.22 25.02.2022 Indicator. Физики заставили каплю ползти по горизонтальной поверхности

 

Ученые из Физического института имени Лебедева (ФИАН) создали в своей лаборатории картину, похожую на сцену из фильма "Терминатор-2": в их эксперименте капли жидкости самопроизвольно перетекали с места на место по поверхности с микроструктурами, «вырезанными» на них с помощью лазера. Такие поверхности могут использоваться в микрофлюидных биочипах и медицинских экспресс-тестах, которые легко умещаются в кармане. Статья о результатах эксперимента опубликована в журнале Applied Surface Science.

«Обычно капля, упавшая на ровную поверхность, остается на месте. Мы заставили ее двигаться — за счет градиента сил поверхностного натяжения. С помощью лазера мы создали на поверхности микроструктуры с нарастанием ее гидрофильности (смачиваемости), и капли двигаются по ним в сторону, где гидрофильность максимальна. Такой “горизонтальный насос”, например, позволит разделять жидкости с разным коэффициентом поверхностного натяжения, упростить биочипы и микрофлюидные устройства», — говорит соавтор исследования Сергей Кудряшов, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН.

Технология перекачки воды с помощью энергии поверхностного натяжения давно изобретена в живой природе. Техасская рогатая ящерица (Phrynosoma cornutum), живущая в пустынях Северной Америки, научилась собирать и перемещать воду, которая конденсируется по ночам на ее теле. Сеть открытых капиллярных каналов, образованных чешуйками, заставляет воду перетекать прямо к ее рту, и этот эффект описывали германские и австрийские ученые.

Чтобы воспроизвести его эффект в лаборатории, Кудряшов и его коллеги решили попробовать создать на поверхности градиент поверхностной энергии (натяжения) — то есть сделать так, чтобы степень гидрофобности постепенно снижалась вдоль поверхности от точки к точке в заданном направлении. К сожалению, это нельзя сделать просто уменьшая толщину слоя гидрофобного покрытия на гидрофильном. Сила поверхностного натяжения очень короткодействующая, чтобы «выключить» гидрофильность металла, на него достаточно нанести слой пластика толщиной в одну-две молекулы

«Можно попробовать сделать это химическим способом, то есть создав участки с химически разным покрытием с разной гидрофобностью, но эта поверхность будет очень капризной, потому что любая пыль, любое органическое загрязнение сразу меняет показатель гидрофобности, и такую поверхность трудно отмыть, чтобы восстановить ее нужный уровень», — объясняет Кудряшов.

Поэтому ученые ФИАНа решили воспользоваться тем, что у капли жидкости довольно большая площадь и она «усредняет» показатель гидрофобности на участках с гидрофобным пластиком и с гидрофильным металлом, где пластик удален лазером. Иначе говоря, капля не сможет отличить поверхность с одним показателем гидрофобности в каждой точке от «шахматной доски» той же площади с разными показателями в каждой клеточке, если среднее значение будет одинаковым.

Для эксперимента ученые покрыли стальные пластины размером пять на пять сантиметров миллиметровым гидрофобным полимерным покрытием на основе силоксана. Затем при помощи лазера наносекундными импульсами они прорезали слой покрытия до металла, создавая ряды канавок длиной пять миллиметров и шириной около 100 микрон.

Затем повторной обработкой лазером ученые модифицировали их, расширив их в разной степени. Так на стальной пластинке появились четыре участка с разными показателями гидрофобности - углом контакта смачивания, то есть углом между поверхностью и условно касательной к поверхности капли воды на ней. На гидрофобной поверхности капля воды растекается меньше, поэтому угол смачивания будет больше. На гидрофильной, наоборот, угол будет меньше, так как капля растекается больше. Угол смачивания на четырех участках варьировался от 46 до 13 градусов.

Затем ученые капали водой на разные участки и наблюдали за ее движением.

ФИАН

Капля воды объемом пять микролитров в эксперименте самопроизвольно перемещалась от гидрофобных участков к гидрофильным. Быстрее всего капля двигалась между первым и вторым участками - в этом месте ее скорость достигала 92 миллиметров в секунду.

«Мы сделали такой “горизонтальный водопад”, где жидкость двигается не за счет силы тяжести, а за счет энергии поверхностного натяжения. На гидрофобным участках энергия поверхностного натяжения выше, на гидрофильных меньше и эта разность потенциалов превращается в кинетическую энергию движения», — говорит Кудряшов.

По его словам, такой «водопад» может быть достаточно длинным — несколько десятков сантиметров. «Главное, чтобы граница между участками с разными углами смачивания была не слишком заметной, чтобы вязкое трение не остановило каплю», — объясняет он.

Ученые отмечают, что такие микроструктурированные поверхности могут найти широкое применение в разработке микрофлюидных устройств — бурно развивающейся области, которая уже дала десятки компактных устройств для исследования химического состава воздуха и воды, диагностических медицинских тестов.

Кудряшов подчеркивает, что в эксперименте использовались широко распространенные лазеры. «Это очень доступная технология. Лазер очень простой, с помощью таких делается маркировка, подписываются металлические таблички. Это очень простые и доступные системы, не требуют особых знаний для обслуживания. Поэтому, если при их помощи получится делать микрофлюидные чипы, это будет очень выгодно».

https://indicator.ru/physics/fiziki-zastavili-kaplyu-polzti-po-gorizontalnoi-poverkhnosti-25-02-2022.htm

Подкатегории