СМИ о нас

30.11.22 30.11.2022 Public Opinion. Российские астрофизики обнаружили и изучили нейтринное излучение Млечного Пути

Фото: unsplash.com

Российские астрофизики изучили весь набор данных с антарктической нейтринной обсерватории IceCube и пришли к выводу, что значимая часть фиксируемых ею нейтрино высоких энергий порождается объектами, расположенными внутри Млечного Пути. Об этом 30 ноября сообщает ТАСС со ссылкой пресс-службу МФТИ.

«Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Мы аккуратно собрали и изучили все случаи регистрации нейтрино высоких энергий за десять лет наблюдений и "увидели" в них Млечный Путь. Уровень статистической достоверности этих наблюдений составляет 99.996%, что редко встречается в нейтринной астрофизике, где пока еще мало качественных данных», — заявил научный сотрудник Физического института РАН Александр Плавин.

Плавин и его коллеги недавно зафиксировали высокоэнергетическое нейтрино, источником которого однозначно являлся объект внутри Млечного Пути. Это открытие заставило российских астрофизиков попытаться определить происхождение зафиксированных ими частиц. В ходе этого анализа ученые хотели определить то, как много нейтрино двигалось в сторону Земли со стороны центра Галактики и той части ночного неба, где находится ее диск. Исследователи предположили, что в этой области будут сосредоточены все потенциальные источники галактических нейтрино высоких энергий, что сделает возможным обнаружение следов их существования.

Для этого ученые вычислили примерное положение источников частиц с самыми высокими энергиями и наложили их на карту ночного неба, полученную при помощи гамма-волновых инструментов американской орбитальной обсерватории «Ферми». Исследователи обнаружили, что число нейтрино было заметно выше в тех регионах карты, которые находились внутри диска галактики или рядом с ним. Подобная закономерность говорит о том, что значительная часть частиц высоких энергий действительно возникает внутри Млечного Пути.

https://publico.ru/news/rossiyskie-astrofiziki-obnaruzhili-i-izuchili-neytrinnoe-izluchenie-mlechnogo-puti

30.11.22 30.11.2022 РАН. Ученые обнаружили нейтринное излучение Млечного Пути

Астрофизики проанализировали общедоступные данные нейтринной обсерватории IceCube, расположенной в Антарктиде. Оказалось, что значительная часть потока высокоэнергетических нейтрино, регистрируемых телескопом, имеет галактическое происхождение, то есть рождена в Млечном Пути.

Статья вышла в ведущем международном журнале Astrophysical Journal Letters.

Млечный Путь, проекция нашей спиралевидной галактики, вдохновляет ученых всего мира, и не только их. Выйдешь ночью – красота. Виден Млечный Путь – миллиарды звезд. Наш большой дом. Во Вселенной галактик много, но мы внутри этой, поэтому ее свет доминирует над другими.

Но «светится» Млечный Путь не только в видимом глазу спектре. При переходе к более высоким энергиям излучения, нежели может увидеть наш глаз, становятся важными и внегалактические источники – хотя и далекие, но более мощные. Но даже в гамма-излучении Млечный Путь доминирует на небе. Вдобавок к излучению отдельных объектов, дают вклад и взаимодействия космических лучей высоких энергий с межзвездным газом.

Российских физиков из Института ядерных исследований РАН (ИЯИ РАН), Физического института РАН (ФИАН), Московского физико-технического института (МФТИ) и института радиоастрономии общества Макса Планка (MPIfR, Германия) привлекло нейтринное излучение Млечного Пути. 

Нейтрино – это уникальная элементарная частица, которая без препятствий проходит через материю, практически не взаимодействуя с ней. Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из космоса. Американский IceCube, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT – вот три нейтринных телескопа, данные которых анализируют физики всего мира. Но они до сих пор не видели излучение нашей родной, такой домашней Галактики. Хотя много теоретиков твердили год от года: звезды с огромными магнитными полями, как и прилетающие космические лучи в состоянии родить нейтрино. Загадка!

Член-корреспондент РАН Сергей Троицкий из ИЯИ рассказывает: «Не так давно установка „Ковер-2” (расположенная в Баксанской нейтринной обсерватории ИЯИ РАН) обнаружила вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино – не доказательство. Может быть просто совпадением.»

В своей новой статье, группа ученых пишет, что им удалось обнаружить галактическое излучение нейтрино. Статья вышла в ведущем международном журнале Astrophysical Journal Letters и выложена в открытый доступ →

Кандидат наук Александр Плавин из ФИАН описывает методику анализа: «Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности 99,996 %, достаточно редко встречающийся в нейтринной астрофизике, где много неопределенностей и пока все еще мало качественных данных.»

Это фундаментальное открытие, с одной стороны, было давно ожидаемым, а с другой – принесло новые вопросы. Нейтрино хотя и концентрируются к галактической плоскости, но не в узкой полосе – ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей ее области. С этим еще предстоит разбираться.

Член-корреспондент РАН Юрий Ковалев (ФИАН и МФТИ) заключает: «Новые, более современные нейтринные эксперименты в Северном полушарии – Baikal-GVD и KM3NeT – в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы „из под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое – большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические.»

 

Цветом показано небо в гамма-лучах, ярко прослеживается плоскость Галактики. Направления прихода нейтрино показаны белыми кружками. Центр Галактики (‘GC’) отмечен звездочкой. Российский нейтринный телескоп Байкал-GVD чувствителен к этой области неба и сможет поймать оттуда нейтрино.

Работа поддержана крупным научным проектом Минобрнауки 075-15-2020-778.
Источник: пресс-служба Института ядерных исследований РАН.

https://new.ras.ru/mir-nauky/news/uchenye-obnaruzhili-neytrinnoe-izluchenie-mlechnogo-puti/

30.11.22 30.11.2022 Научная Россия. Ученые обнаружили нейтринное излучение млечного пути

Астрофизики проанализировали общедоступные данные нейтринной обсерватории IceCube, расположенной в Антарктиде. Оказалось, что значительная часть потока высокоэнергетических нейтрино, регистрируемых телескопом, имеет галактическое происхождение, то есть рождена в Млечном Пути. Статья вышла в ведущем международном журнале Astrophysical Journal Letters.

Цветом показано небо в гамма-лучах, ярко прослеживается плоскость Галактики. Направления прихода нейтрино показаны белыми кружками. Центр Галактики (‘GC’) отмечен звездочкой. Российский нейтринный телескоп Байкал-GVD чувствителен к этой области неба и сможет поймать оттуда нейтрино Информация взята с портала «Научная Россия» (https://scientificrussia.ru/)

 

Млечный Путь, проекция нашей спиралевидной Галактики, вдохновляет ученых всего мира и не только их. Выйдешь ночью – красота. Виден Млечный Путь – миллиарды звезд. Наш большой дом. Во Вселенной галактик много, но мы внутри этой, поэтому ее свет доминирует над другими.

Но “светится” Млечный Путь не только в видимом глазу спектре. При переходе к более высоким энергиям излучения, нежели может увидеть наш глаз, становятся важными и внегалактические источники – хотя и далекие, но более мощные. Но даже в гамма-излучении Млечный Путь доминирует на небе. Вдобавок к излучению отдельных объектов дают вклад и взаимодействия космических лучей высоких энергий с межзвездным газом.

Российских физиков из Института ядерных исследований РАН (ИЯИ РАН), Физического института РАН (ФИАН), Московского физико-технического института (МФТИ) и института радиоастрономии общества Макса Планка (MPIfR, Германия) привлекло нейтринное излучение Млечного Пути. Нейтрино – это уникальная элементарная частица, которая без препятствий проходит через материю, практически не взаимодействуя с ней. Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из космоса. Американский IceCube, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT – вот три нейтринных телескопа, данные которых анализируют физики всего мира. Но они до сих пор не видели излучение нашей родной, такой домашней Галактики. Хотя много теоретиков твердили год от года: звезды с огромными магнитными полями, как и прилетающие космические лучи, в состоянии родить нейтрино. Загадка!

Член-корреспондент РАН Сергей Троицкий из ИЯИ рассказывает: «Не так давно установка “Ковер-2” (расположенная в Баксанской нейтринной обсерватории ИЯИ РАН) обнаружила вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино – не доказательство. Может быть просто совпадением».

В своей новой статье группа ученых пишет, что им удалось обнаружить галактическое излучение нейтрино. Статья вышла в ведущем международном журнале Astrophysical Journal Letters и выложена в открытый доступ по следующему адресу: https://iopscience.iop.org/article/10.3847/2041-8213/aca1ae.

Кандидат наук Александр Плавин из ФИАН описывает методику анализа: «Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности 99.996%, достаточно редко встречающийся в нейтринной астрофизике, где много неопределенностей и пока все еще мало качественных данных».

Это фундаментальное открытие, с одной стороны, было давно ожидаемым, а с другой, принесло новые вопросы. Нейтрино хотя и концентрируются к галактической плоскости, но не в узкой полосе - ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей ее области. С этим еще предстоит разбираться.

Член-корреспондент РАН Юрий Ковалев (ФИАН и МФТИ) заключает: «Новые, более современные нейтринные эксперименты в Северном полушарии - Baikal-GVD и KM3NeT - в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы “из-под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое - большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические».

Работа поддержана крупным научным проектом Минобрнауки 075-15-2020-778.
Информация и фото предоставлены пресс-службой Института ядерных исследований РАН

https://scientificrussia.ru/articles/ucenye-obnaruzili-nejtrinnoe-izlucenie-mlecnogo-puti

30.11.22 30.11.2022 Tekdeeps. Milky Way in neutrino light

A neutrino is an elementary particle that practically does not interact with matter. This is its uniqueness: having been born as a result of nuclear processes, it can fly huge distances through outer space, even through stars and planets, without colliding with a single atom of matter. Neutrinos are one of the few cosmic “heralds” that can tell us, for example, about the processes occurring in the cores of galaxies covered with dense clouds of gas and dust. But that is why neutrinos are extremely difficult to detect.

To “hunt” for neutrinos, physicists build special neutrino telescopes – complex and bulky detectors capable of recording the passage of piece neutrinos per year. With the detection of neutrinos, too, not everything is simple – particles come in different energies and they need their own separate devices. Relatively recently, neutrino telescopes began to work, which managed to find high-energy neutrinos coming from deep space. American IceCube in Antarctica, the Russian Baikal Neutrino Telescope (also known as Project Baikal-GVD), European KM3NeT – three such neutrino detectors, the data of which are analyzed by physicists around the world. But they still have not seen the “home” neutrino radiation of our Galaxy against the general neutrino background. Although from the point of view of the theory, stars with huge magnetic fields, like incoming cosmic rays, are able to give birth to neutrinos.

In a recent article in The Astrophysical Journal Letters a group of physicists from the Institute for Nuclear Research of the Russian Academy of Sciences, the Physical Institute of the Russian Academy of Sciences, the Moscow Institute of Physics and Technology and the Institute of Radio Astronomy of the Max Planck Society (Germany) write that they managed to detect precisely the galactic neutrino radiation. To do this, the researchers collected 70 cases of registration of high-energy neutrinos on the detector. IceCube for a total of ten years of observation. It turned out that neutrinos do indeed concentrate towards the galactic plane, but not in a narrow band – the width of the neutrino Milky Way turned out to be like two lengths of the Big Dipper bucket. Perhaps this indicates that a significant part of the neutrino is born not just in our Galaxy, but in its nearest region. This is yet to be dealt with.

As a corresponding member of the Russian Academy of Sciences notes Yuri Kovalev (FIAN AND MIPT): “New, more advanced neutrino experiments in the Northern Hemisphere – Baikal-GVD and KM3NeT – will soon make it possible to conduct a similar analysis with their data and study the area of ​​\u200b\u200bthe galactic center in more detail. Neutrino telescopes register elementary particles “from under their feet”, and there is the center of the Galaxy for us northerners. In the meantime, focusing on the IceCube and Baikal-GVD data, we can say with confidence that the neutrino sky is not so simple – a large contribution to the astrophysical neutrino flux is made by sources of completely different classes, both galactic and extragalactic”.

According to the press service of the Moscow Institute of Physics and Technology.

https://tekdeeps.com/milky-way-in-neutrino-light/?_ga=2.82926110.929055565.1670842073-1005982490.1670842072

30.11.22 30.11.2022 За науку. Ученые обнаружили нейтринное излучение Млечного Пути

Астрофизики проанализировали общедоступные данные нейтринной обсерватории IceCube, расположенной в Антарктиде. Оказалось, что значительная часть потока высокоэнергетических нейтрино, регистрируемых телескопом, имеет галактическое происхождение, то есть рождена в Млечном Пути. Статья вышла в ведущем международном журнале Astrophysical Journal Letters.

Млечный Путь, проекция нашей спиралевидной Галактики, вдохновляет ученых всего мира и не только их. Выйдешь ночью — красота. Виден Млечный Путь — миллиарды звезд. Наш большой дом. Во Вселенной галактик много, но мы внутри этой, поэтому ее свет доминирует над другими.

Но «светится» Млечный Путь не только в видимом глазу спектре. При переходе к более высоким энергиям излучения, нежели может увидеть наш глаз, становятся важными и внегалактические источники: хотя и далекие, но более мощные. Но даже в гамма-излучении Млечный Путь доминирует на небе. Вдобавок к излучению отдельных объектов, дают вклад и взаимодействия космических лучей высоких энергий с межзвездным газом.

Российских физиков из Института ядерных исследований РАН (ИЯИ РАН), Физического института РАН (ФИАН), Московского физико-технического института (МФТИ) и института радиоастрономии общества Макса Планка (MPIfR, Германия) привлекло нейтринное излучение Млечного Пути. Нейтрино — это уникальная элементарная частица, которая без препятствий проходит через материю, практически не взаимодействуя с ней. Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из космоса. Американский IceCube, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT — вот три нейтринных телескопа, данные которых анализируют физики всего мира. Но они до сих пор не видели излучения нашей родной, такой домашней Галактики. Хотя много теоретиков твердили год от года: звезды с огромными магнитными полями, как и прилетающие космические лучи, в состоянии родить нейтрино. Загадка!

Член-корреспондент РАН Сергей Троицкий из ИЯИ рассказывает: «Не так давно установка “Ковер-2” (расположенная в Баксанской нейтринной обсерватории ИЯИ РАН) обнаружила вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Может быть просто совпадением». 

В своей новой статье группа ученых пишет, что им удалось обнаружить галактическое излучение нейтрино. 

Кандидат наук Александр Плавин из ФИАН описывает методику анализа: «Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности — 99,996%, достаточно редко встречающийся в нейтринной астрофизике, где много неопределенностей и пока все еще мало качественных данных». 

Это фундаментальное открытие, с одной стороны, было давно ожидаемым, а с другой — принесло новые вопросы. Нейтрино, хотя и концентрируются к галактической плоскости, но не в узкой полосе: ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей ее области. С этим еще предстоит разбираться.

Член-корреспондент РАН Юрий Ковалев (ФИАН И МФТИ) заключает: «Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT — в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы “из-под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое — большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические».

Цветом показано небо в гамма-лучах, ярко прослеживается плоскость Галактики. Направления прихода нейтрино показаны белыми кружками. Центр Галактики («GC») отмечен звездочкой. Российский нейтринный телескоп Baikal-GVD чувствителен к этой области неба и сможет поймать оттуда нейтрино. Источник: Astrophysical Journal Letters

Работа поддержана крупным научным проектом Минобрнауки.

https://zanauku.mipt.ru/2022/11/30/uchenye-obnaruzhili-nejtrinnoe-izluchenie-mlechnogo-puti/

30.11.22 30.11.2022 RSS+. Учёные из РФ изучили нейтринное излучение Млечного Пути, зафиксированное обсерваторией IceCube

Российские учёные изучили данные с антарктической нейтринной обсерватории IceCube. Специалисты пришли к выводу, что большая часть фиксируемых обсерваторией нейтрино высоких энергий создана объектами, расположенными внутри Млечного Пути, сообщает агентство ТАСС со ссылкой на пресс-службу МФТИ.

Александр Плавин 
Научный сотрудник Физического института РАН (Москва) 

«Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Мы аккуратно собрали и изучили все случаи регистрации нейтрино высоких энергий за десять лет наблюдений и "увидели" в них Млечный Путь. Уровень статистической достоверности этих наблюдений составляет 99.996%, что редко встречается в нейтринной астрофизике, где пока ещё мало качественных данных».

Космические нейтрино сверхвысоких энергий — мельчайшие и самые лёгкие частицы материи, разогнанные до околосветовых скоростей. Учёные сейчас не имеют точных представлений, откуда они возникают. Однако часть астрономов предполагает, что эти частицы разгоняются в горячих останках взорвавшихся внутри Млечного Пути звёзд. Другая часть считает, что источники нейтрино — ядра и облака газа в далёких галактиках. Эта гипотеза начала набирать популярность в последние годы из-за нескольких сделанных открытий. Например, физики из обсерватории Пьера Оже нашли первые намёки на то, что все подобные частицы носят внегалактическое происхождение. Пять лет назад специалисты из нейтринной обсерватории IceCube локализовали один из их возможных источников, а именно чёрную дыру TXS 0506+056, находящуюся в созвездии Ориона на расстоянии в 4,33 млрд световых лет от Земли.

Как отмечают научный сотрудник Физического института РАН Александр Плавин и его коллеги, IceCube и российская установка «Ковер-2», созданная на площадке Басканской нейтринной обсерватории ИЯИ РАН, зафиксировали высокоэнергетическое нейтрино, источником которой однозначно был объект внутри Млечного Пути. 

После этого открытия российские учёные снова изучили данные, полученные IceCube за всё время работы, и попытались предположить происхождение зафиксированных ими частиц. В ходе этого анализа они пытались определить, как много нейтрино двигалось в сторону Земли со стороны центра Галактики. Исследователи посчитали, что в этой области должны быть сосредоточены все потенциальные источники галактических нейтрино высоких энергий. Это должно сделать возможным обнаружение следов их существования в наборе данных с IceCube. 

Для обнаружения следов исследователи вычислили примерное положение источников частиц с высокими энергиями и наложили их на карту ночного неба, полученную при помощи гамма-волновых инструментов американской орбитальной обсерватории «Ферми». После этого они обнаружили, что число нейтрино было заметно выше в тех участках карты, который находились внутри диска галактики или около него. 

По словам учёных, эта закономерность говорит о возникновении значительном количестве частиц высоких энергий внутри Млечного Пути. Однако пока исследователи не могут объяснить, почему их источники находятся не только внутри диска Галактики, но и рядом с ним. Поэтому учёные надеются, что последующие исследования раскроют этот вопрос.

https://habr.com/ru/news/t/702682/#habracut

30.11.22 30.11.2022 News-Life. Млечный Путь в нейтринном свете

Нейтрино – это элементарная частица, которая практически не взаимодействует с материей. В этом её уникальность: родившись в результате ядерных процессов, она может пролететь огромные расстояния сквозь космическое пространство, даже сквозь звёзды и планеты, не столкнувшись ни с одним атомом вещества. Нейтрино – одни из немногих космических «вестников», способных рассказать нам, например, о процессах, протекающих в ядрах галактик, укрытых плотными облаками газа и пыли. Но именно поэтому нейтрино чрезвычайно сложно обнаружить.

Для «охоты» за нейтрино физики строят специальные нейтринные телескопы – сложные и громоздкие детекторы, способные фиксировать пролёт штучных нейтрино в год. С детектированием нейтрино тоже не всё просто – частицы бывают разных энергий и для них нужны свои отдельные приборы. Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из дальнего космоса. Американский IceCube в Антарктиде, российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT – три таких нейтринных детектора, данные которых анализируют физики всего мира. Но они до сих пор не видели «домашнее» нейтринное излучение нашей Галактики на общем нейтринном фоне. Хотя с точки зрения теории звёзды с огромными магнитными полями, как и прилетающие космические лучи в состоянии родить нейтрино.

В свежей статье в The Astrophysical Journal Letters группа физиков из Института ядерных исследований РАН, Физического института РАН, Московского физико-технического института и Института радиоастрономии общества Макса Планка (Германия) пишут, что им удалось обнаружить именно галактическое излучение нейтрино. Для этого исследователи собрали 70 случаев регистрации высокоэнергетических нейтрино на детекторе IceCube в общей сложности за десять лет наблюдений. Оказалось, что нейтрино, действительно, концентрируются к галактической плоскости, но не в узкой полосе – ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей её области. С этим ещё предстоит разбираться.

Как отмечает член-корреспондент РАН Юрий Ковалёв (ФИАН И МФТИ): «Новые, более современные нейтринные эксперименты в Северном полушарии – Baikal-GVD и KM3NeT – в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы “из под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое – большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические».

По материалам пресс-службы МФТИ.

https://news-life.pro/baykalsk/335959015/

30.11.22 30.11.2022 Новости городов. Российские ученые совершили открытие, впервые зарегистрировав нейтринные потоки от млечного пути

одна третья часть летящих к нам из космоса высокоэнергетических нейтрино, которые регистрируются обсерваториями в разных частях мира, рождены в нашем Млечном пути или с ним. К такому выводу пришла группа ученых из Физического института им. Лебедева ран (ФИАН), Института ядерных исследований ран, Московского физико-технического института и института радиоастрономии общества Макса Планка (MPIfR, Германия).

фото: nasa.gov

Нейтрино, или «частицы-призраки», как охарактеризовал их в свое время фантаст Айзек Азимов, крайне неохотно взаимодействуют с веществом, отчего их очень сложно зарегистрировать. Но зато почти ничто не влияет на скорость их перемещения и ничто не может является для них преградой, – ежесекундно землю и нас с вами «прошивают» насквозь миллионы первозданных нейтрино, рожденных далекими галактиками, а мы и не замечаем этого.

 Вообще-то нейтрино могут рождаться и в недрах нашей Земли (их называют геонейтрино), и в ядерных реакторах, и на солнце. Но все эти разновидности частиц мы называем низкоэнергетическими в отличие от тех, что летят к нам из глубин Вселенной. Последние гораздо хуже изучены, и потому представляют особый Интерес для ученых, как кирпичики нашего мироздания. 

Если более тяжелые частицы – протоны и нейтроны можно создавать и регистрировать в специальных ускорителях или кольцевых ускорителях элементарных частиц (коллайдерах) на Земле, то легкие нейтрино поймать оказалось не так просто.

Для их отлова строят нейтринные обсерватории. На сегодняшний день для регистрации высокоэнергетических частиц из космоса созданы три: американский IceCube в Антарктиде, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD) и европейский KM3NeT.

До последнего времени эти детекторы «видели» лишь те нейтрино, которые летели к нам от далеких галактик — квазаров. Ученые подозревали, что наша домашняя Галактика – Млечный путь тоже может рождать нейтрино, но до последнего времени у них не было возможности проверить это.  

– Нейтрино вообще очень сложно ловить, – для этого нужны километры воды или льда, – говорит сотрудник ФИАНа, кандидат физико-математических наук Александр Плавин. – К тому же надо было придумать правильные методы, чтобы отличить нейтрино из нашей Галактики от нейтрино из других галактик. И мы первыми в мире такие методы придумали. Нейтрино от Млечного пути были зарегистрированы нами при помощи обсерватории  IceCube.

– Каков процент высокоэнергетических нейтрино, исходящих от Млечного пути?

– От нашей Галактики мы регистрируем примерно одну треть таких частиц.

– Что представляет собой нейтринная обсерватория, которая помогла их «поймать»?

– IceCube это кубический километр льда, расположенный на глубине нескольких километров подо льдом в Антарктиде. Ледяная обсерватория вся опутана датчиками-фотодетекторами, которые фиксируют вспышки, рождающиеся при взаимодействии нейтрино с другими частицами, проходящими через лед.

– То есть лед нужен, чтобы в нем детектор мог «видеть» вспышки? От чего они возникают, если частицы-нейтрино ни с чем не взаимодействуют?

– Они взаимодействуют только редко, и чем больше объем прозрачного вещества, тем больше у нас шансов зарегистрировать такие «встречи». И такие обсерватории — единственный для нас способ расширить познания в области физики элементарных частиц, из которых состоит наша Вселенная.

Цветом показано небо в гамма-лучах, ярко прослеживается плоскость Галактики. Направления прихода нейтрино показаны белыми кружками. Центр Галактики (‘GC’) отмечен звездочкой. Российский нейтринный телескоп Байкал-GVD чувствителен к этой области неба и сможет поймать оттуда нейтрино. фото: ФИАН

– Но в ускорителях типа Большого адронного коллайдера создают частицы…

– Создают, только далеко не такие высокоэнергетические. Их на Земле создать искусственно вообще невозможно, потому что невозможно создать такие энергии, которые ими движут, – в 1 петаэлектронвольт, или квадриллион электронвольт (миллион миллиардов электронвольт, или 10 в 15 степени электронвольт — Авт.). Поэтому если мы хотим продвигаться в нашем познании природы дальше, то простой и доступный способ — ловить нейтрино из космоса, где их создали какие-то мощные объекты.

– Что уже «рассказали» исследователям «пойманные» нейтрино?

– Это очень легкие частицы, которые долетают до нас в не измененном состоянии, – как излучились миллиарды лет назад в далеком квазаре, такими и прилетают. Поэтому они дают самую верную информацию про центральные области других галактик, которые другими способами не видны. Их свет до нас не доходит, а нейтрино доходят. 

Справка «МК».

время, за которое нейтрино достигает Земли:

— от Солнца – 8 минут 

— от Млечного пути— десятки и сотни тысяч лет

— от квазаров – миллиарды лет

– Что их рождает в далеких галактиках?

– Что-то очень мощное, что играет в галактиках роль ускорителей частиц до очень больших энергий. Такими ускорителями могут быть сверхмощные черные дыры.

– Получается, что в нашей Галактике таким ускорителем является наша черная дыра – Стрелец А?

– Мы пока лишь зафиксировали, что нейтрино летят к нам со стороны Млечного пути, но пока не можем утверждать, что их родила наша черная дыра. Не исключено, что они приходят из области, расположенной в той же плоскости, что и Млечный путь.

https://urban-news.ru/2022/11/30/rossijskie-uchenye-sovershili-otkrytie-vpervye-zaregistrirovav-nejtrinnye-potoki-ot-mlechnogo-puti/

30.11.22 30.11.2022 ТАСС. Российские астрофизики обнаружили и изучили нейтринное излучение Млечного Пути

Ученые пришли к выводу, что значимая часть фиксируемых ей нейтрино высоких энергий порождается объектами, расположенными внутри Млечного Пути

МОСКВА, 30 ноября. /ТАСС/. Российские астрофизики изучили весь набор данных с антарктической нейтринной обсерватории IceCube и пришли к выводу, что значимая часть фиксируемых ей нейтрино высоких энергий порождается объектами, расположенными внутри Млечного Пути. Об этом в среду сообщила пресс-служба МФТИ.

"Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Мы аккуратно собрали и изучили все случаи регистрации нейтрино высоких энергий за десять лет наблюдений и "увидели" в них Млечный Путь. Уровень статистической достоверности этих наблюдений составляет 99.996%, что редко встречается в нейтринной астрофизике, где пока еще мало качественных данных", - заявил научный сотрудник Физического института РАН (Москва) Александр Плавин, чьи слова приводит пресс-служба вуза.

Космические нейтрино сверхвысоких энергий представляют собой мельчайшие и самые легкие частицы материи, разогнанные до околосветовых скоростей. Пока ученые не имеют точных представлений о том, как они возникают. Некоторые астрономы предполагают, что эти частицы разгоняются в горячих останках взорвавшихся звезд внутри Млечного Пути, а другие считают, что их источником являются ядра и облака газа в далеких галактиках.

Последняя гипотеза начала набирать популярность в последние годы в связи с несколькими открытиями. В частности, несколько лет назад физики из обсерватории Пьера Оже нашли первые намеки на то, что все подобные частицы носят внегалактическое происхождение. Пять лет назад исследователи из нейтринной обсерватории IceCube, установленной на южном полюсе Земли, локализовали один из их возможных источников - черную дыру TXS 0506+056, расположенную в созвездии Ориона на расстоянии в 4,33 млрд световых лет от Земли.

Нейтринное сияние Галактики

С другой стороны, как отмечают Плавин и его коллеги, IceCube и российская установка "Ковер-2", построенная на площадке Басканской нейтринной обсерватории ИЯИ РАН, недавно зафиксировали высокоэнергетическое нейтрино, источником которой однозначно являлся объект внутри Млечного Пути. Это открытие заставило российских астрофизиков повторно изучить данные, полученные IceCube за все время работы, и попытаться определить происхождение зафиксированных им частиц.

В ходе этого анализа ученые попытались определить то, как много нейтрино двигалось в сторону Земли со стороны центра Галактики и той части ночного неба, где находится ее диск. Исследователи предположили, что в этой области будут сосредоточены все потенциальные источники галактических нейтрино высоких энергий, что сделает возможным обнаружение следов их существования в общем наборе данных с IceCube.

Для этого ученые вычислили примерное положение источников частиц с самыми высокими энергиями и наложили их на карту ночного неба, полученную при помощи гамма-волновых инструментов американской орбитальной обсерватории "Ферми". Ученые обнаружили, что число нейтрино было заметно выше в тех регионах карты, которые находились внутри диска галактики или рядом с ним.

По словам астрофизиков, подобная закономерность говорит о том, что значительная часть частиц высоких энергий, фиксируемых детекторами IceCube, действительно возникает внутри Млечного Пути. При этом ученые пока не могут объяснить, почему их источники находятся не только внутри диска Галактики, но и по соседству с ним. Последующие наблюдения, как надеются Плавин и его коллеги, помогут получить ответ на этот вопрос.

https://nauka.tass.ru/nauka/16462509

30.11.22 30.11.2022 Naked Science. Ученые обнаружили нейтринное излучение Млечного Пути

Астрофизики проанализировали общедоступные данные нейтринной обсерватории IceCube, расположенной в Антарктиде. Оказалось, что значительная часть потока высокоэнергетических нейтрино, регистрируемых телескопом, имеет галактическое происхождение, то есть рождена в Млечном Пути.

Млечный Путь / ©Getty images

Статья вышла в ведущем международном журнале Astrophysical Journal Letters. Млечный путь, проекция нашей спиралевидной Галактики, вдохновляет ученых всего мира, и не только их. Выйдешь ночью – красота. Виден Млечный Путь – миллиарды звезд. Наш большой дом. Во Вселенной галактик много, но мы внутри этой, поэтому ее свет доминирует над другими.

Но «светится» Млечный путь не только в видимом глазу спектре. При переходе к более высоким энергиям излучения, нежели может увидеть наш глаз, становятся важными и внегалактические источники – хотя и далекие, но более мощные. Но даже в гамма-излучении Млечный Путь доминирует на небе. Вдобавок к излучению отдельных объектов, дают вклад и взаимодействия космических лучей высоких энергий с межзвездным газом.

Российских физиков из Института ядерных исследований РАН (ИЯИ РАН), Физического института РАН (ФИАН), Московского физико-технического института (МФТИ) и института радиоастрономии общества Макса Планка (MPIfR, Германия) привлекло нейтринное излучение Млечного пути. Нейтрино – это уникальная элементарная частица, которая без препятствий проходит через материю, практически не взаимодействуя с ней.

Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из космоса. Американский IceCube, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT – вот три нейтринных телескопа, данные которых анализируют физики всего мира. Но они до сих пор не видели излучение нашей родной, такой домашней Галактики. Хотя много теоретиков твердили год от года: звезды с огромными магнитными полями, как и прилетающие космические лучи в состоянии родить нейтрино. Загадка!

Цветом показано небо в гамма-лучах, ярко прослеживается плоскость Галактики. Направления прихода нейтрино показаны белыми кружками. Центр Галактики (‘GC’) отмечен звездочкой. Российский нейтринный телескоп Байкал-GVD чувствителен к этой области неба и сможет поймать оттуда нейтрино / ©Пресс-служба МФТИ

Член-корреспондент РАН Сергей Троицкий из ИЯИ рассказывает: «Не так давно установка “Ковер-2” (расположенная в Баксанской нейтринной обсерватории ИЯИ РАН) обнаружила вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино – не доказательство. Может быть просто совпадением».

В своей новой статье, группа ученых пишет, что им удалось обнаружить галактическое излучение нейтрино. Статья вышла в ведущем международном журнале Astrophysical Journal Letters и выложена в открытый доступ по следующему адресу. Кандидат наук Александр Плавин из ФИАН описывает методику анализа: «Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности 99,996 процентов, достаточно редко встречающийся в нейтринной астрофизике, где много неопределенностей и пока все еще мало качественных данных».

Это фундаментальное открытие, с одной стороны, было давно ожидаемым, а с другой – принесло новые вопросы. Нейтрино хотя и концентрируются к галактической плоскости, но не в узкой полосе – ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей ее области. С этим еще предстоит разбираться.

Член-корреспондент РАН Юрий Ковалев (ФИАН И МФТИ) заключает: «Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT – в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы “из под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое — большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические». 

https://naked-science.ru/article/column/uchenye-obnaruzhili-nejtrinnoe

Подкатегории