СМИ о нас

10.10.23 10.10.2023 Московский комсомолец. Физике нужны буйные: директор ФИАНа Колачевский рассказал о проблемах институтов

Российские ученые ощущают повышенное внимание со стороны руководства, но испытывают дефицит в научной кооперации. При заметном усилении вузов в науку идет всего 0,5 процента их выпускников...

О плюсах и минусах современного состояния отечественной науки мы поговорили с директором Физического института им. Лебедева, членом-корреспондентом РАН Николаем КОЛАЧЕВСКИМ.

Николай Колачевский. Фотография предоставлена Отделом по связям с общественностью ФИАН

— Николай Николаевич, вы руководите институтом, имеющим широчайший спектр исследований, под вашим руководством работает около двух тысяч сотрудников. Вам, как говорится, и карты в руки — оцените, что случилось хорошего и не очень в нашей системе организации науки за последнее десятилетие.

— Оно началось с пресловутой реформы РАН, когда все академические институты в одночасье были переведены под управление ФАНО (Федеральное агентство научных организаций. — Авт.). Это был очень болезненный момент. Чиновники пытались установить другие принципы успешности институтов, их деление на категории.

Основной проблемой, на мой взгляд, было то, что ФАНО стремилось стимулировать развитие науки в стране исключительно управленческими методами при старом объеме финансирования. Деньги рассчитывали найти в результате оптимизации прежней системы институтов, закрыв «неэффективные и ненужные». Это, по-моему, не сработало.

По опыту могу с полной уверенностью сказать: если не вкладывать, особенно в естественнонаучное направление, дополнительные ресурсы, одни управленческие методы ни к чему не приведут. Чтобы делать хорошую науку, надо привлекать людей дополнительными грантами, мегагрантами, закупать современное оборудование, строить новые лаборатории.

— Но нам ставили в пример, что в США легко прощаются с неэффективными организациями...

— Это так. Только забывали сказать, что, закрыв одно неперспективное направление, к примеру, плазменный токомак, они тут же открывали два новых и всех сотрудников с первого перебрасывали на новый фронт работы. У нас ничего подобного «сокращенным» научным сотрудникам не светило — кто-то из них в итоге покидал страну, кто-то уходил в другие сферы деятельности. В результате сейчас нам остро не хватает кадров. Мы до сих пор переживаем поколенческий кризис, который особенно ощущается в области физики твердого тела, в микроэлектронике.

Ослабшее твердое тело

— Почему именно в этой области?

— Потому что она была и остается очень востребованной во всем мире начиная со второй половины 80-х годов. И там, где были предложены лучшие условия для ее развития, туда специалисты и уезжали. Как вы понимаете, это была не наша страна. Странно, да? Самое востребованное направление в мире, все пользуются компьютерами, у каждого в кармане смартфон, а у нас в научном плане почти ничего нет, как с генетикой когда-то, — пустое поле.

Научных организаций, работающих сейчас в этом направлении, — по пальцам пересчитать. К примеру, в самом ярком, столичном регионе это Институт физики твердого тела в подмосковной Черноголовке, Институт физических проблем им. П.И.Капицы, наш ФИАН, созданный в начале 2000-х академический институт ИНМЭ, небольшие научные подразделения в вузах, таких как МГУ им. М.В.Ломоносова, МФТИ, МИЭТ, и ряде подведомственных Росатому структурах, но для физики твердого тела с ее широчайшим кругом задач это капля в море. Причем очень много теоретиков, а нужны экспериментаторы-практики, а это ведь база для микроэлектроники, и не только.

— В регионах, наверное, еще хуже?

— В регионах немного позитивнее — оттуда народ не столь активно выезжал за рубеж. Хотя в целом ситуация везде оставляет желать лучшего: среднее поколение выпало, остались только те, кому за 70, и зеленая молодежь, вчерашние студенты да аспиранты, которые только встают на научный путь.

Вот мы, организаторы, и ломаем голову, как успеть сделать так, чтобы подтянуть, увлечь молодежь в науку, пока на местах еще есть опытные наставники. И не просто увлечь, но мотивировать остаться здесь, стать настоящим новым поколением научных работников.

— Какие же меры принимаются в этом направлении?

— Сейчас много проектов по поддержке талантливой молодежи, и с каждым годом они множатся. Есть также попытка возврата наших бывших коллег из-за границы, под них создаются новые лаборатории, правда, масштаб этого вектора, увы, не соответствует масштабу проблемы. Тут хотелось бы привести в пример Китай с его мощной программой возврата соотечественников.

Кто развязывает руки молодым и талантливым

— Может, у вас есть свой рецепт по удержанию молодых сотрудников в институте?

— Как и во многих других научных организациях, удерживать их удается интересными задачами и созданием комфортной среды. К примеру, мы делаем ставку на ребят, которые только защитили кандидатскую диссертацию. Человек только вырос из коротких штанишек, а ему уже опытно-конструкторскую работу предлагают или серьезный проект, к примеру, создание космической научной станции «Миллиметрон», наш квантовый компьютер.

— Это тот компьютер, который дистанционно запускал президент страны?

— Да, запустили и промоделировали на нем простую молекулу. А ведь его сделали ребята, которым всем в районе 30 лет.

— Я так понимаю, эта работа делалась в рамках ОКР (опытно-конструкторской разработки). А что, если бы все пошло не так, как хотелось?

— Работа ведется в рамках Дорожной карты по квантовым вычислениям Росатома, очень ответственный проект под управлением Росатома и Минцифры. И вообще контроль за бюджетными средствами увеличился, денег дают в основном на ОКР. Что касается предыдущей стадии разработки — НИРа (научно-исследовательской работы. — Авт.), на нее мы, как правило, тратим деньги с госзадания. Они выделяются на три года, и в рамках этой работы институт не может отступить ни на шаг от запланированных исследований. К примеру, заявил измерить спектр какого-то вещества, значит, только им и должен заниматься. Если ты померяешь спектр другого, это тебе могут не зачесть. Поэтому ученые избегают импровизаций, хотя — мы это знаем из истории науки — именно случайности, движимые интуицией ученого, нередко приводят к удивительным открытиям.

— Это что касается свободного творчества ученого?

— Да, это один из его элементов. И, кстати, во времена старой РАН с этим было посвободнее, сейчас все более зарегламентировано.

— Как вы решаете эту проблему — ведь ученый должен творить?

— Научная среда пока подстраивается под существующие условия. В последние годы многие руководители осваивают искусство создания административно-научных барьеров, которые, как амортизаторы машин, должны защищать от ненужных булыжников на дороге, мешающих плавной езде. Такими амортизаторами являются руководители-профессионалы, которые сегодня существенную часть своей жизни тратят на сглаживание непонятных ситуаций, находясь в постоянном диалоге с чиновниками Минобрнауки. Именно они, беря на себя решение всех административных неувязок, развязывают руки научному коллективу — он может творить свободней.

В чем настоящая польза ученого

— До февраля 2022 года от всех исследователей для поднятия их показателей успешности требовали размещать статьи в ведущих зарубежных журналах. Как с этим обстоит дело сейчас?

— Я бы сказал, что мы до сих пор не договорились. Несмотря на то что прошло уже много времени, полтора года, с начала СВО и многие иностранные журналы запретили нашим сотрудникам публиковаться у них, все равно есть те, которые продолжают принимать наши статьи. Также есть так называемый белый список журналов, в которых рекомендовано публиковаться нашим ученым, — в нем перемешаны и зарубежные (среди них есть достаточно высокорейтинговые), и наши издания. Благодаря этому, кстати, существенно подрос рейтинг многих российских журналов, мы публикуем в них треть своих статей.

— То есть успешность ученого по-прежнему рассматривают в основном через призму публикационной активности?

— Получается, что так. Но и сами авторы, как настоящие творцы чего-то нового, как художники или композиторы, хотят, чтобы об их творении узнало как можно больше людей во всем мире. Но, с другой стороны, для страны сейчас особо остро стоит потребность в реверсивных технологиях. Это комплементарная задача. Мы должны разработать приборы или микросхемы, которые, скорее всего, кто-то уже сделал раньше нас. Перед теми, кто привык повышать свой рейтинг только статьями, встает вопрос — наука ли это, когда ты занимаешься известной технологией и поэтому не можешь опубликовать статью о новых результатах?

Илья Семериков на фоне своего детища — 16-кубитного квантового компьютера на ионах иттербия. Фотография предоставлена Отделом по связям с общественностью ФИАН

— А вы как считаете?

— Считаю, что это тоже очень сложная научная деятельность, которая должна оцениваться по заслугам. И все сейчас ищут ответ на вопрос — как именно ее оценивать?

— А польза для страны уже не рассматривается в качестве веского аргумента?

— Вот именно сейчас такую систему оценки и пытаются наладить, нужна только соответственная экспертиза. Знаю, что новое руководство РАН прикладывает много усилий, чтобы донести до всех, что как реверсивные технологии, так и технологии в целом важны не меньше, а может, даже больше, чем наращивание публикационной активности. Но дьявол кроется в деталях. Нам говорят: «Покажите результат». А его зачастую сложно продемонстрировать.

— Почему?

— Потому что как только мы начинаем создавать что-то материальное, то у контролирующих структур (а таких масса — начиная от Минобрнауки и Роспатента и кончая прокуратурой) тут же возникает много вопросов. К примеру, создал ученый прибор для лечения онкологии — на него сразу начинают сыпаться вопросы, в частности, не потратил ли он лишних денег, проводил ли тендер, выбирая запчасти и соисполнителя работ, правильно ли запатентовал разработку, получил ли лицензии и т.д. Со статьями гораздо проще.

— Нередко дешевые запчасти оказываются низкого качества...

— В том-то и дело. А ученый должен чувствовать себя свободным в выборе инструментов, защищенным со всех сторон. К тому же — иметь право на ошибку.

— Слышала, что многие, не имея таких свобод, вынуждены отказываться даже от предлагаемых бюджетных денег за ту или иную работу. Это так?

— Многие ученые никогда не сталкивались с государственными требованиями по опытно-конструкторским работам, а когда узнают о них, оказываются не готовы работать, соблюдая море зачастую бессмысленных формальных требований и под прессингом контролирующих структур. Но тем не менее Минобрнауки запустило программу научного приборостроения, выделены деньги на создание литографов, криостатов растворения, квантовых сенсоров, ДНК-секвенаторов. По ряду направлений работа уже кипит.

— Кстати, как дела с первым российским томографом, который должен заменить импортные, ведь разговоры о необходимости его создания шли еще полтора года назад?

— Эта история, надеюсь, будет со счастливым концом. Около года назад мы передали нашу оригинальную разработку (она не относится к реверсивным) так называемому индустриальному партнеру — Росатому. Он привлек специалистов, которые под нашим научным руководством должны через 3 года начать поставлять отечественные МРТ в больницы.

— Есть ли сложности с комплектующими для будущего томографа?

— Это электроника, та, что отвечает за прием радиочастотного сигнала от тела пациента. Ее нам приходится разрабатывать с нуля.

— То есть китайцы ее не поставляют?

— Китайцы продают пока, но стараются делать это так, чтобы самим не подставиться да и свою технологию не передать. Все это затрудняет процесс и удлиняет сроки. Но в целом, если есть варианты кооперации, от них не надо отказываться.

— Это если знать, что зарубежный партнер на сто процентов надежен. А если в какой-то момент он таковым не окажется?

— Безусловно, в более дальней перспективе, эволюционно, мы должны стремиться к тому, чтобы многое делать самим. Те же китайцы в этом смысле уникальны, они долго работали, чтобы создать очень жесткий внутренний стержень собственной индустриальной независимости. Их сейчас пытаются прижимать, но успехи страны настолько яркие во многих областях, что по научной мощности КНР уже обогнала Европу и сейчас делит паритет разве что с США.

Мы же зачастую не можем освоить даже самое необходимое, которое к тому же лежит у нас под носом. Я недавно узнал, что при наличии огромных месторождений лития мы не только не изготавливали сами электрические аккумуляторы, но до последнего времени даже не думали разрабатывать эти месторождения! Только сейчас приступаем к этой работе.

Такой же критичной, на мой взгляд, сферой является производство своих светодиодов. Если нам откажутся их поставлять, мы что, на лампы накаливания снова будем переходить? Безусловно, из подобных тупиков хотя бы по ряду самых важных направлений надо как можно быстрее выходить, и, к счастью, нынешние руководители РАН, осуществляющие научно-методическое руководство всеми институтами страны, это понимают и ведут диалог с представителями власти в правильном ключе. А ведь еще совсем недавно «пробить» чиновников с их позицией «мы все купим» было почти невозможно.

Евгений Демихов — разработчик МРТ-установки. Фотография предоставлена Отделом по связям с общественностью ФИАН

Полпроцента — на науку

— Возвращаясь к теме кадров, скажите, увеличился ли процент выпускников вузов, которые выбирают в качестве своей профессиональной деятельности науку?

— Несмотря на то что науку в вузах подтянули благодаря ряду принятых программ, у меня есть беспокойство по поводу того, что количество ученых, мягко говоря, не растет. Хорошо, если 0,5 процента студентов идут сейчас в науку. И даже для этого мы прикладываем большие усилия.

— В чем же причина, если есть и программы, и немалые средства, которые идут на развитие высшей школы?

— Моя версия: мы просто недостаточно много рекламируем будущие условия наших ученых. А ведь они на самом деле уже неплохие.

— Вы можете пообещать им неплохую зарплату при приеме на работу?

— Я не могу сказать за все области науки (не исключаю, что где-то младшие научные сотрудники получают меньше), но в естественнонаучных НИИ, если молодой специалист активен, он получает в среднем по 60–70 тысяч в месяц.

— Что от него требуется за такие деньги?

— Медианный доход может обеспечить опубликованная статья, подключение к гранту. К примеру, даже бакалавры одного из вузов, где у нас имеется базовая кафедра, поступают к нам на стартовые 30 тысяч рублей. В процессе работы, если человек показывает себя с хорошей стороны, подключается к перспективным проектам типа квантового компьютера или протонного ускорителя для медицинских целей, его зарплата может подрасти до 100–200 тысяч рублей.

Кто зажжет новых Ландау

— Если бы был выбор, вы бы согласились сейчас на возвращение вашего института в лоно РАН?

— Думаю, что мне хотелось бы вернуться с институтом в ту академию, которую я в силу возраста не застал. Это 80-е годы, когда многие ученые отделения физических наук были молодыми и горели идеями, когда были живы Виталий Лазаревич Гинзбург, ученики Льва Давидовича Ландау, полный сил Александр Федорович Андреев, когда расцветала школа лазерной физики под руководством Николая Геннадиевича Басова и Алексея Михайловича Прохорова, когда Николай Семенович Кардашев грезил проектом «Радиосатрон».

Сейчас нам, физикам, не хватает буйных в хорошем смысле этого слова, какими были тогда названные мной люди. А такими могут быть в основном молодые. Приведу вам пример из своей практики. Лет пять назад, когда я читал лекции по квантовой информатике в МФТИ, приходит к нам парень с направления теоретической физики и говорит: «Я хочу делать квантовый компьютер». «Как же так? Ведь ты еще вчера грезил столкновениями черных дыр и изучением Вселенной! — говорю я ему. — Это разные сферы, потянешь ли?» Он стоит на своем. Пришлось поддержать, и после к нему примкнули еще человек пять, образовалась целая группа, которая начала заниматься любимым делом. А в 2023 году, спустя всего пять лет после нашего диалога, Илья Семериков уже докладывал самому Владимиру Владимировичу о создании квантового компьютера.

— А если бы вы его не поддержали, не заметили?

— Таких людей надо замечать. Они как тепличные растения из оранжереи: растут и только и делают, что набираются знаний. Сначала 11 лет в физико-математических классах, потом, победив в олимпиадах, поступают в передовой вуз, где еще пять с лишним лет учатся, не имея даже времени смотреть на девушек. После они попадают в академическую среду и в идеале должны заниматься там тем, для чего их растили, — научным творчеством. Они плохо разбираются в окружающем мире, но очень хорошо знают, что им интересно и в чем они по-настоящему сильны.

— Вы тоже таким были?

— Да. Я во многом по-настоящему стал разбираться, став руководителем: обычная жизнь по-другому устроена, здесь есть закупки, деньги, ответственность и порой очень сложные человеческие отношения. И понимая это, а также то, что нашим молодым ребятам все равно не избежать встречи с реальной жизнью, мы стараемся талантливых молодых ученых хотя бы в своем институте по максимуму ограждать от всех невзгод, они же как огурцы тепличные — не знают, что за стеклом может быть холодно (улыбается).

Кстати, у IT-специалистов давно, причем не только на Западе, но и в наших ведущих компаниях, существуют, вы не поверите... офис-няни, специально нанятые сотрудники, которые заботятся о рабочей атмосфере в большом сложном коллективе, если надо, подносят ценным сотрудникам чай-кофе, а иногда и тапочки.

Сегодня IT-специалисты имеют и бронь от мобилизации, и льготную ипотеку. И я понимаю, почему это происходит. Что, если кто-то из них вдруг перестанет поддерживать цифровой сервис для голосования за мэра или президента или другой не менее важный ресурс? Раньше такое же отношение было к физикам, от которых зависела безопасность страны, и я считаю, что настала пора такое отношение возвращать повсеместно.

Кстати, на мой взгляд, нам не мешало бы еще вернуть сплоченность в наших научных кругах. На фоне того, что институтам в целом добавили финансирование, худо-бедно, но стала обновляться приборная база, появились новые гранты, у нас пропало чувство локтя, которое мы ощущали еще лет 10 назад.

— При капитализме все становятся более обособленными, наверное, это неизбежный процесс. За границей, к примеру, такая обособленность тоже присутствует?

— В ведущих странах за этим очень следят. Создаются консорциумы, межинститутские центры, профессура переезжает из одного института в другой, поощряются обмены студентами, конференции. В общем, любая движуха в этом направлении приветствуется.

А мы сейчас почти перестали встречаться с коллегами, да и площадок для встреч и обсуждения наших первостепенных планов заметно поубавилось, каждая организация словно окуклилась в собственную оболочку. Снизилась мобильность ученых даже внутри страны. Забыли, что открытость дает возможность обмена научной и информацией и идеями по организации науки. Если крупным научным центрам типа Курчатовского института такое существование под силу и без создания консорциумов, то у других именно взаимодействие с себе подобными является единственной возможностью начать активное движение вперед. Ведь нам сейчас, как в сказке про Алису в Стране чудес, чтобы попасть в число стран с сильным научно-техническим потенциалом, надо бежать как минимум вдвое быстрее!

https://www.mk.ru/science/2023/10/10/fizike-nuzhny-buynye-direktor-fiana-kolachevskiy-rasskazal-o-problemakh-institutov.html

06.10.23 06.10.2023 ТАСС. В Сириусе для участников с новых территорий провели мастер-класс по финбезопасности

Мастер-классы стали частью программы международной олимпиады по финансовой безопасности

СИРИУС /федеральная территория/, 6 октября. /ТАСС/. Школьники и студенты из Донецкой и Луганской народных республик, Херсонской и Запорожской областей стали участниками мастер-класса по проведению финансовых расследований, который для них провели в рамках международной олимпиады по финансовой безопасности. Об этом ТАСС сообщил руководитель департамента информационных технологий Международного учебно-методического центра финансового мониторинга (МУМЦФМ) Игорь Баринов.

"На мастер-классе финалисты из образовательных организаций новых территорий провели финансовое расследование, решив предложенный для них кейс. Школьники и студенты отметили, что задания, предложенные им для прохождения на финале олимпиады, были значительно сложнее и интереснее тех, с которыми их знакомили в рамках Летней школы. Под руководством экспертов центра ребята успешно нашли связи между объектами, подозрительные транзакции и конечных бенефициаров", - сказал Баринов.

Мастер-классы проводились при помощи обучающей программы "Графус". По словам организаторов, некоторые участники мастер-класса уже познакомилась с обучающей системой на Летней школе, которая проводилась центром межолимпиадной подготовки Физического института имени П. Н. Лебедева РАН (ФИАН) и Финансовым университетом при правительстве РФ при содействии Росфинмониторинга и МУМЦФМ.

"Графус" является разработкой Международного учебно-методического центра финансового мониторинга. "Графус" - обучающая система по проведению финансовых расследований, кейсы которой основаны на типологии отмывания денег (все данные являются вымышленными). Система позволяет искать данные с помощью визуального запроса, анализировать взаимосвязи между объектами, представлять результаты в виде графов, а также выявлять похожие теневые схемы.

 

Мастер-классы стали частью программы международной олимпиады по финансовой безопасности. В этом году финалистами стали около 500 школьников и студентов из России и еще 18 стран. Победители и призеры получат льготы при поступлении в ведущие вузы страны, а также возможность устроиться на престижную работу в крупных финансовых организациях. Международная олимпиада по финансовой безопасности проводится с 2021 года по поручению президента Владимира Путина.

"Сириус" - территория на черноморском побережье Сочи, где проходила зимняя Олимпиада 2014 года и где расположен основной комплекс олимпийских объектов. С 2015 года на базе олимпийской инфраструктуры развивается образовательный центр "Сириус". Населенный пункт находится в Имеретинской низменности, в междуречье Мзымты и Псоу, окружен Кавказскими горами и уникальным природным заповедником. На этой территории находятся спортивные объекты, отели, порт "Имеретинский" и железнодорожный вокзал.

 

 

01.10.23 01.10.2023 Сибирское отделение Российской академии наук. На базе ФИАН создан центр коллективного пользования «Прометеус»

На данный момент в ЦКП КПТ «Прометеус» были полностью проведены работы по 5 заявкам. Одними из первых пользователей Центра коллективного пользования на базе КПТ «Прометеус» стали ученые из Института ядерной физики им. Г.И. Будкера СО РАЕ. Научной группой были проведены совместные работы с использованием разработанного в ИЯФ СО РАН малогабаритного детектора нейтронов с парой литьевых полистирольных сцинтилляторов, один из которых обогащен бором. Ученые измерили плотность потока нейтронов для оценки возможности реализации бор-протонозахватной терапии и сечение реакции 11B(p,a)aa до энергии протонов 200 МэВ. Проведенные эксперименты показали хорошие результаты, поэтому коллектив ИЯФ СО РАН принял решение продолжить работы по данной тематике и повторно обратиться в Центр коллективного пользования на базе КПТ «Прометеус».

https://www.sbras.ru/ru/news/50791
 

01.10.23 01.10.2023 Scienty. На базе ФИАН создан центр коллективного пользования Прометеус


Система иммобилизации пациента. Источник фото: ФИАН

В Физическом институте им. П.Н. Лебедева РАН (ФИАН) на базе комплекса протонной терапии «Прометеус» создан Центр коллективного пользования (ЦКП КПТ «Прометеус»). ЦКП образован в рамках реализации проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов» при поддержке ФНТП «Развитие синхротронных и нейтронных исследований и исследовательской инфраструктуры». Всего в организациях, подведомственных Минобрнауки России, сегодня функционирует более 500 ЦКП, из них около 300 в научных организациях и более 200 в высших учебных заведениях.

ЦКП КПТ «Прометеус» ФИАН позволяет проводить фундаментальные и прикладные исследования в области радиационной биофизики, радиобиологии, ядерной медицины, радиационной безопасности, диагностики и лучевой терапии онкологических заболеваний, протонной томографии, в области ядерной и радиационной физики, дозиметрии, радиационной стойкости материалов, космической биологии.

«Наш Центр открывает доступ ученым и исследователям различных областей наук к уникальному протонному излучению, интерес к которому продолжает расти. Широкий диапазон рабочих энергий и простота эксплуатации позволяют в короткие сроки проводить планирование и высокоточное облучение интересующих объектов. Мы убеждены, что в результате совместных работ станет возможным более динамичное развитие методик протонной терапии, а работа ЦКП внесет вклад в развитие научного потенциала отечественной науки, – рассказал руководитель ЦКП Александр Евгеньевич Шемяков. – Чтобы воспользоваться возможностями нашего Центра, нужно оставить заявку на сайте, согласовать план работ и приступать к исследованиям».

Создание Центра повышает доступность уникального оборудования для институтов РАН, отраслевых НИИ и вузов Российской Федерации, а также международных и зарубежных научных организаций. Это вносит вклад в развитие фундаментальной и прикладной науки, а также позволяет совершенствовать технологию протонной лучевой терапии для более успешной борьбы с онкологическими заболеваниями.

«Новый Центр обеспечит Московский регион и страну современной исследовательской инфраструктурой, позволяющей проводить исследования нового уровня. Он также будет стимулировать развитие новейших технологий в области ядерной и радиационной физики», – отметила научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская.

На данный момент в ЦКП КПТ «Прометеус» были полностью проведены работы по 5 заявкам. Одними из первых пользователей Центра коллективного пользования на базе КПТ «Прометеус» стали ученые из Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). Научной группой были проведены совместные работы с использованием разработанного в ИЯФ СО РАН малогабаритного детектора нейтронов с парой литьевых полистирольных сцинтилляторов, один из которых обогащен бором. Ученые измерили плотность потока нейтронов для оценки возможности реализации бор-протонозахватной терапии и сечение реакции 11B(p,a)aa до энергии протонов 200 МэВ. Проведенные эксперименты показали хорошие результаты, поэтому коллектив ИЯФ СО РАН принял решение продолжить работы по данной тематике и повторно обратиться в Центр коллективного пользования на базе КПТ «Прометеус».


Комплекс протонной терапии «Прометеус». Источник фото: ФИАН

https://scienty.ru/astronomy/na-baze-fian-sozdan-czentr-kollektivnogo-polzovaniya-prometeus/

05.10.23 05.10.2023 Научная Россия. Увидеть электрон: физик Колачевский объяснил суть открытия нобелевских лауреатов-2023 — «МК», Веденеева Наталья

Установить контроль за процессами, которые раньше невозможно было отследить, поможет работа новых нобелевских лауреатов по физике — американца Пьера Агостини, немца Ференца Крауза и шведки Анн Л'Юлье. Премия присуждена за генерацию чрезвычайно коротких, аттосекундных импульсов света, при помощи которых можно будет изучать жизнь невидимых ранее электронов. Для чего эти импульсы могут пригодиться, корреспондент «МК» Наталья Веденеева  выяснила в разговоре с директором Физического института им. Лебедева РАН, членом-корреспондентом РАН Николаем Колачевским.

Н.Н. Колачевский. Фото Ольги Мерзляковой

Н.Н. Колачевский. Фото Ольги Мерзляковой Информация взята с портала «Научная Россия»

Официально премия присуждена «за экспериментальные методы генерации аттосекундных импульсов света для изучения динамики электронов в веществе». «Эти импульсы являются инструментами для исследования мира электронов внутри атомов и молекул», говорится в официальном сообщении Нобелевского комитета. Раньше их невозможно было отследить, а теперь основанные исключительно на теории формулы «оживут», и мы сможем увидеть электронную оболочку атома своими собственными глазами. Через микроскоп, конечно.

— Это вполне заслуженная премия, — комментирует решение Нобелевского комитета Николай Колачевский. — Действительно награждены пионеры этой области, которые смогли преодолеть рубеж фемтосекундного импульса, считавшегося ранее самым коротким.

— Можете сначала рассказать о фемтосекундных импульсах?

— Фемтосекундный лазерный импульс имеет длину 10 в минус 15 степени секунды (название происходит от латинского слова femten, означающего «пятнадцать»). Его длину можно также представить как миллионную миллиардной доли секунды. Раньше казалось, что это предельный рубеж. 1 фемтосекунда равна периоду колебания света в световой волне, с ее помощью можно изучать колебания молекул.

— Для решения каких задач они используются?

— Фемтосекундные импульсы сегодня являются настоящими рабочими лошадками. С их помощью наблюдают за химическими процессами, делают отверстия в материалах с очень чистыми стенками, проводят тончайшие хирургические операции, улучшают систему ГЛОНАСС и GPS.

— Когда нынешние нобелевские лауреаты начали работу по генерации более коротких импульсов?

— В конце 1990 — начале 2000-х годов начались работы, направленные на получение аттосекундного импульса (от латинского atten — «восемнадцать») длиной 10 в минус 18 степени секунды (или миллиард миллиардной доли секунды. — Авт.). Когда Крауз впервые продемонстрировал одиночные аттосекундные импульсы — это был 2001 год, — уже тогда появилась надежда на присуждение ему Нобелевской премии за преодоление рубежа фемтосекундного импульса. Это новое знание в мире, аттосекундный лазер — это одна тысячная фемтосекунды.

— Как его можно представить себе?

— К примеру, один оборот электрона вокруг атома водорода — это тысячи или сотни аттосекунд. Теперь мы можем наблюдать за его движением! Причем интерес представляет не только динамика электрона, но и сам механизм генерации короткого импульса.

— Можете описать, каким образом короткий лазерный импульс помогает увидеть электрон?

— Фемтосекундный лазер бьет в мишень — в контейнер (кювету) с газом. Из этой газовой мишени в направлении пучка лазера вылетает аттосекундный импульс. Это происходит не в видимом, а в ультрафиолетовом диапазоне. Этот сверхкороткий импульс можно выделить и направить на другую мишень, к примеру, на отдельную молекулу или на отдельный атом и посмотреть, как он провзаимодействует с этим атомом. Помните, еще в школе всем нам показывали рисунки формулы молекулы водорода — атом водорода, и вокруг него летает электрон. Так вот, если объяснять предельно просто, аттосекундный импульс как фонариком высвечивает этот электрон и выбивает из молекулы. В момент выбивания и происходит регистрация его направления, в котором он двигался до этого. То есть регистрация разрушает вещество, создавая красивые фотографии застывшего электронного облака.

— Для чего могут пригодиться знания о динамике электронов?

— Пока в широком смысле практических приложений для аттосекундного лазера нет. Это чисто фундаментальная наука, которая должна выстрелить в будущем. Есть, в частности, надежда на решение с помощью него вопросов квантовых коммуникаций, проблемы излучения одиночных фотонов, квантовой запутанности. Уже сегодня между банками прокладываются каналы с квантовым шифрованием... Думаю, аттосекундные лазеры будут прежде всего использованы в этом направлении. Правда, для них потребуется для начала создать мощные лазерные установки, которые пока имеются всего в десяти институтах США, Канады и Европы. К сожалению, наша страна, имеющая хороший приоритет в исследованиях с фемтосекундными лазерами, с аттосекундными пока не работает.

https://scientificrussia.ru/articles/uvidet-elektron-fizik-kolacevskij-obasnil-sut-otkrytia-nobelevskih-laureatov-2023-mk-vedeneeva-natala

04.10.23 04.10.2023 Московский комсомолец. «Вечный краситель»: профессор Наумов объяснил за что вручили Нобелевку по химии

Нобелевскую премию по химии 2023 года, по сути, присудили за самый надежный в мире и простой в приготовлении краситель. Причем первооткрывателем нового метода окрашивания веществ стал наш бывший соотечественник, специалист в области физики твёрдого тела и оптики Алексей Екимов. После него по списку следуют американцы Луис Брюс и Мунги Бавенди. Премия, по официальной версии, присуждена за открытие и разработку полупроводниковых квантовых точек (нанокристаллов). Что это за точки, как они уже сегодня улучшают нашу с вами жизнь, мы поговорили с членом-корреспондентом РАН, профессором, руководителем Троицкого филиала ФИАН и заведующим кафедры МПГУ Андреем Наумовым.

«Квантовые точки будут «держать цвет», пока не истлеет бумага»

Люминесценция квантовых точек в микроскопе при возбуждении свечения лазером. Фото предоставлено А.Наумовым.

 

– Мы очень рады, что Нобелевская премия присуждена нашему соотечественнику, ведь именно в нашей стране всегда находилась сильнейшая в мире школа люминесценции, – говорит Наумов. – Все мы знаем, основные природные красители – это органические молекулы. Они задают цвет предметам в рассеянном и отраженном свете. Но можно объекты заставить светиться, если, к примеру, направить на них лазер. К примеру, недавно в Светлогорске, что находится в Калининградской области, мне рассказали, как отличить натуральный янтарь от поддельного: натуральный, содержащий внутри себя люминесцентные красители люминофоры, при свете ультрафиолетового фонарика светится бело-оранжевым светом.

Алексей Екимов, по словам Наумова, первым пришел к выводу, что органические молекулы, которые придают окраску различным объектам, можно заменить полупроводниками, и цвет от этого будет более ярким и долговечным.

Справка «МК» Полупроводник — это твердотельный кристаллический материал, электрическая проводимость которого намного меньше, чем в проводниках (металлах) и больше, чем в диэлектриках (к примеру, в резиновых перчатках).

Ученый догадался, что, если уменьшить полупроводник до нескольких нанометров (частиц, не видимых глазом), эти маленькие кубики или шарики начинают вести себя как люминесцирующие молекулы. Причем от их размеров зависит частота (энергия) излучаемых ими световых частиц – фотонов, то есть, в конечном счете – цвет.

– Екимов — первым синтезировал такие полупроводниковые нанокристаллы в стекле довольно простым методом, и обнаружил зависимость цвета от размера, – поясняет Андрей Наумов.

– Почему эти полупроводники назвали квантовыми точками?

– Точками — за их малые размеры, а квантовыми – за их квантовую природу — наличие ограниченного количества энергетических состояний.

– Разные цвета в природе обусловлены разными молекулами. Чтобы получить определенный цвет от полупроводника, его состав тоже должен быть особенным?

– В том-то и заключается преимущество полупроводника, – он один может дать весь спектр цветов в зависимости от размеров его нанокристаллов. Правда, ученые все равно экспериментируют с разными составами кристаллов.

– Наш Алексей Екимов прояснил зависимость цвета квантовых точек от размеров, реализовал их метод синтеза в стекле, а за что дали премию Луису Брюсу и Мунги Бавенди?

– Брюс, работая над той же проблемой в США, разработал метод синтеза квантовых точек в коллоидном растворе, а Бавенди одни из первых увидел свечение одной-единственной квантовой точки. Благодаря этому мы в итоге научимся лучше понимать природу света.

Это «звездное небо» — фотография отдельных светящихся квантовых точек на поверхности стеклянной подложки в микроскопе. Фото предоставлено А.Наумовым. 

– Где же используются квантовые точки?

– Сейчас этих приложений очень много. На основе квантовых точек создаются новые красители, которые почти не деградируют в течение долгого времени, даже при освещении. Вспомните, сколько живет у вас чек из магазина? Уже через месяц вы ничего на нем не прочитаете. А если использовать для создания красителя квантовые точки — они будут «держать цвет», пока не истлеет бумага.

– Слышала, что есть приборы на основе квантовых точек...

Тут прикладную значимость определяет способность квантовых точек светиться. На основе этого были созданы источники излучения – диоды для лампочек, для светодиодных матриц. Но первым прибором, где обыватель столкнулся с технологией, использующей квантовые точки, оказался... телевизор. Одна из фирм использовала эти точки для увеличения яркости экрана, насыщенности тонов, заменив ячейками с ними обычные светодиоды. Быстрое преобразование цвета в световой волне уже используется в оптических квантовых компьютерах, в оптоволоконных линиях связи, которыми окутана вся планета, для каналов шифрования. Квантовые точки используют и в солнечной энергетике для создания более дешевых солнечных батарей.

Отмечу одну из ярчайших сфер применения квантовых точек – детекторы. Один из детекторов, который нам с вами хорошо известен – это человеческий глаз. Но мы видим только в видимом диапазоне световой волны — от красного до фиолетового. Если нужно посмотреть в ультрафиолетовом или инфракрасном диапазонах, нужны другие приборы. К примеру, обычная матрица на фотокамере «видит» в гораздо большем диапазоне, но если на нее нанести покрытие с квантовыми точками, этот диапазон расшириться еще больше, – такая камера будет снимать отличные кадры даже при полной темноте, без подсветки. Наконец, квантовые точки можно использовать в качестве маркеров в биомедицинской аналитике.

– Можно ли создать при помощи квантовых точек умные очки, через которые будет хорошо рассматривать полярное сияние?  

– Думаю, в ближайшем будущем появиться такое и много других приложений для этой технологии.

https://www.mk.ru/science/2023/10/04/vechnyy-krasitel-professor-naumov-obyasnil-za-chto-vruchili-nobelevku-po-khimii.html?ysclid=lnerwh3el5226224890

04.10.23 04.10.2023 Научная Россия. Директор ФИАН Н.Н. Колачевский: «Ученые открыли новое измерение»

Николай Николаевич Колачевский. Фото: Елена Либрик / "Научная Россия"

3 октября состоялось вручение Нобелевской премии 2023 г. по физике. Награды были удостоены Пьер Агостини, Ференц Крауш и Анн Л'Юилье за открытие экспериментальных методов генерации ультракоротких импульсов света, которые можно использовать для получения изображений процессов, протекающих внутри атомов и молекул. О значении для развития науки впечатляющего научного прорыва рассказал директор Физического института им. П.Н. Лебедева Российской академии наук (ФИАН) член-корреспондент РАН Колачевский Николай Николаевич.

«Это сама по себе очень интересная фундаментальная задача — такая же, как пронаблюдать черную дыру или изучить далекую Галактику. <…> На мой взгляд, понимание процессов, которые протекают в атомах — как электроны формируют оболочки, как они выглядят, как идет распределение волновых функций — важно для осуществления задач квантовой химии, где химики оперируют электронными орбиталями <…> в процессе работы над новыми материалами, лекарствами и другими интересными задачами. <…> Второе направление, которое сейчас активно развивается — квантовые технологии, квантовые вычисления, квантовые коммуникации, где <…> качество управления элементарными частицами влияет на качество работы квантовых компьютеров, передачи информации», — сообщил Николай Николаевич.

Н.Н. Колачевский отметил, что технология уже испытана во многих научных институтах и пока реализуется посредством специальных масштабных высокотехнологичных установок. Ученый рассказал, что ему посчастливилось наблюдать, как велась работа над открытием в Институте квантовой оптики общества Макса Планка, и сопоставил уникальное достижение с открытием перехода в «новое измерение».

«Я считаю, что Нобелевская премия полностью заслуженная. Она дана большим тяжелым трудом. Каждая такая установка — это десятки людей, которые создавали ее и работают на ней. <…> Я рад, что награда нашла героя», — заключил Н.Н. Колачевский.

https://scientificrussia.ru/articles/direktor-fian-nn-kolacevskij-ucenye-otkryli-novoe-izmerenie

03.10.23 03.10.2023 Московский комсомолец. Увидеть электрон: физик Колачевский объяснил суть открытия нобелевских лауреатов-2023

Премия присуждена за генерацию чрезвычайно коротких импульсов света, благодаря которым можно изучать невидимые ранее электроны

Установить контроль за процессами, которые раньше невозможно было отследить, поможет работа новых нобелевских лауреатов по физике — американца Пьера Агостини, немца Ференца Крауза и шведки Анн Л'Юлье. Премия присуждена за генерацию чрезвычайно коротких, аттосекундных импульсов света, при помощи которых можно будет изучать жизнь невидимых ранее электронов. Для чего эти импульсы могут пригодиться, корреспондент «МК» выяснила в разговоре с директором Физического института им. Лебедева РАН, членом-корреспондентом РАН Николаем Колачевским.

Премия присуждена за генерацию чрезвычайно коротких импульсов света, благодаря которым можно изучать невидимые ранее электроны

Официально премия присуждена «за экспериментальные методы генерации аттосекундных импульсов света для изучения динамики электронов в веществе». «Эти импульсы являются инструментами для исследования мира электронов внутри атомов и молекул», говорится в официальном сообщении Нобелевского комитета. Раньше их невозможно было отследить, а теперь основанные исключительно на теории формулы «оживут», и мы сможем увидеть электронную оболочку атома своими собственными глазами. Через микроскоп, конечно.

— Это вполне заслуженная премия, — комментирует решение Нобелевского комитета Николай Колачевский. — Действительно награждены пионеры этой области, которые смогли преодолеть рубеж фемтосекундного импульса, считавшегося ранее самым коротким.

— Можете сначала рассказать о фемтосекундных импульсах?

— Фемтосекундный лазерный импульс имеет длину 10 в минус 15 степени секунды (название происходит от латинского слова femten, означающего «пятнадцать»). Его длину можно также представить как миллионную миллиардной доли секунды. Раньше казалось, что это предельный рубеж. 1 фемтосекунда равна периоду колебания света в световой волне, с ее помощью можно изучать колебания молекул.

— Для решения каких задач они используются?

— Фемтосекундные импульсы сегодня являются настоящими рабочими лошадками. С их помощью наблюдают за химическими процессами, делают отверстия в материалах с очень чистыми стенками, проводят тончайшие хирургические операции, улучшают систему ГЛОНАСС и GPS.

— Когда нынешние нобелевские лауреаты начали работу по генерации более коротких импульсов?

— В конце 1990 — начале 2000-х годов начались работы, направленные на получение аттосекундного импульса (от латинского atten — «восемнадцать») длиной 10 в минус 18 степени секунды (или миллиард миллиардной доли секунды. — Авт.). Когда Крауз впервые продемонстрировал одиночные аттосекундные импульсы — это был 2001 год, — уже тогда появилась надежда на присуждение ему Нобелевской премии за преодоление рубежа фемтосекундного импульса. Это новое знание в мире, аттосекундный лазер — это одна тысячная фемтосекунды.

— Как его можно представить себе?

— К примеру, один оборот электрона вокруг атома водорода — это тысячи или сотни аттосекунд.

Теперь мы можем наблюдать за его движением! Причем интерес представляет не только динамика электрона, но и сам механизм генерации короткого импульса.

— Можете описать, каким образом короткий лазерный импульс помогает увидеть электрон?

— Фемтосекундный лазер бьет в мишень — в контейнер (кювету) с газом. Из этой газовой мишени в направлении пучка лазера вылетает аттосекундный импульс. Это происходит не в видимом, а в ультрафиолетовом диапазоне. Этот сверхкороткий импульс можно выделить и направить на другую мишень, к примеру, на отдельную молекулу или на отдельный атом и посмотреть, как он провзаимодействует с этим атомом. Помните, еще в школе всем нам показывали рисунки формулы молекулы водорода — атом водорода, и вокруг него летает электрон. Так вот, если объяснять предельно просто, аттосекундный импульс как фонариком высвечивает этот электрон и выбивает из молекулы. В момент выбивания и происходит регистрация его направления, в котором он двигался до этого. То есть регистрация разрушает вещество, создавая красивые фотографии застывшего электронного облака.

— Для чего могут пригодиться знания о динамике электронов?

— Пока в широком смысле практических приложений для аттосекундного лазера нет. Это чисто фундаментальная наука, которая должна выстрелить в будущем. Есть, в частности, надежда на решение с помощью него вопросов квантовых коммуникаций, проблемы излучения одиночных фотонов, квантовой запутанности. Уже сегодня между банками прокладываются каналы с квантовым шифрованием... Думаю, аттосекундные лазеры будут прежде всего использованы в этом направлении. Правда, для них потребуется для начала создать мощные лазерные установки, которые пока имеются всего в десяти институтах США, Канады и Европы. К сожалению, наша страна, имеющая хороший приоритет в исследованиях с фемтосекундными лазерами, с аттосекундными пока не работает.

https://www.mk.ru/science/2023/10/03/uvidet-elektron-fizik-kolachevskiy-obyasnil-sut-otkrytiya-nobelevskikh-laureatov2023.html

03.10.23 03.10.2023 Российская газета. Нобелевская премия по физике присуждена за изучение электронов и природы света

Нобелевская премия по физике присуждена за изучение электронов и природы света Пьеру Агостини, Ференцу Краузу и Анн Л Юилье. Они награждены за новаторский вклад в аттосекундную физику: понимание того, что происходит с материей на уровне молекулярных взаимодействий на протяжении одной квинтиллионной секунды - с лазерными импульсами длительностью в одну миллиардную долю миллиардной доли секунды, которые использовались, например, для изучения движения электронов внутри атомов.

Лауреаты открыли дверь в загадочный мир электронов, что стало настоящим прорывом в науке.

Лауреаты открыли дверь в загадочный мир электронов, что стало настоящим прорывом в науке. / EPA

"Теперь мы способны открыть дверь в мир электронов. Аттофизика дает возможность понять механизмы, которыми управляют электроны. Следующим шагом станет их использование", - сказала Ева Олссон, председатель Нобелевского комитета по физике.

В 2022 году премия по физике была присуждена группе ученых - французу Алену Аспе, американцу Джону Клаузеру и австрийцу Антону Цайлингеру за "эксперименты с запутанными фотонами, доказательство нарушений неравенств Белла и передовые исследования в области квантовой информационной теории".

Накануне в Стокгольме назвали имена лауреатов в области физиологии или медицины - награду получили венгерский биохимик Каталин Карико и американский иммунолог, биохимик Дрю Вайссман за открытия, которые помогли разработать мРНК-вакцины, в том числе от COVID-19.

Вручение награды состоится 10 декабря, в день смерти Нобеля. На этой церемонии из рук короля Карла XVI Густава лауреаты получают золотую медаль с портретом учредителя премии и диплом. Размер премии около одного миллиона долларов.

Комментарий

Николай Колачевский, директор Физического института РАН, член-корреспондент РАН:

- Я ожидал, что данная работа получит Нобелевскую премию. Слежу за этими исследованиями давно. Познакомился с Ференцом Краузе, когда в начале 2000-х приехал работать в Германию. Он начинал эксперименты по созданию систем с длительностью импульса 10-18 секунды. Сама эта величина так мала, что кажется почти нереальной. Но ученые нашли неожиданный вариант. Они взяли существующие фемтосекундные лазеры с импульсом 10-15 секунды и направили луч на струю газа. При взаимодействии возникли эти сверхкороткие импульсы.

Ученые получили в руки необычный инструмент, который позволит осуществить прорыв в новый мир. Они проникли внутрь атома и посмотрели, как движутся электроны. Это напоминает фотографию с помощью вспышки. Каждый импульс дает одно изображение, а их последовательность движение электрона во времени.

Зачем нужны такие уникальные лазерные системы? Понятно, что в фундаментальной науке для них огромное поле деятельности. А в реальной? Сейчас трудно сказать. Возможно, они будут применяться в квантовых технологиях, которые сейчас активно развиваются. Но напомню, что когда впервые появились фемтосекундные лазеры, то тоже звучали голоса: а зачем они нужны? А сегодня это настоящие рабочие лошадки в самых разных сферах техники. Они режут металл, используются в системах ГЛОНАСС, делают операции на глазах и т.д. Учитывая, насколько быстро сегодня фундаментальные исследования осваиваются в промышленности, можно прогнозировать, что и для "лауреатов" в самое ближайшее время работа в реальной экономике найдется.

Справка "РГ"

В 1901-2022 годах премия по физике присуждалась 116 раз. Среди лауреатов 12 советских и российских физиков, а также ученых, родившихся и получивших образование в СССР и впоследствии принявших другое гражданство. В 1958 году премией были удостоены Павел Черенков, Илья Франк и Игорь Тамм, в 1962 - Лев Ландау, в 1964 - Николай Басов и Александр, в 1978 году - Петр Капица, в 2000 году - Жорес Алфёров, в 2003 году - Виталий Гинзбург и Алексей Абрикосов, в 2010 году - Андрей Гейм и Константин Новосёлов.

https://rg.ru/2023/10/03/atomnoe-kino.html

Подкатегории