СМИ о нас
06.11.22 | 06.11.2022 Протвино Сегодня. Научно-популярный лекторий прошел на территории протвинского предприятия АО «Протом» |
Традиционно лекторий проводится в антуражных локациях научно-исследовательских институтов и наукоёмких производств в наукоградах Московской области.
Основная идея проекта – полностью погрузить слушателей в научную атмосферу, доступно и интересно на территории наукоемких производств или НИИ рассказать о науке. Это дает возможность увидеть ее изнутри, напрямую пообщаться с учеными, сотрудниками производств, узнать новую актуальную информацию об отечественных разработках, вовлечь талантливую молодежь в сферу науки, повысить доступность информации о достижениях и перспективах российской науки. Одним из форматов проекта Science Talks стал Lab-стрим — прямые трансляции из лабораторий или производств, в рамках которых учёные показывают свои лаборатории, проводят небольшие эксперименты в прямом эфире.
Молодые ученые, которых приглашают в качестве спикеров на офлайн Sciencе talks, готовят небольшие, но яркие, понятные, интересные выступления, отвечают на вопросы слушателей.
Антон ПОПОВ, организатор, кандидат биологических наук, заведующий лабораторией Института экспериментальной теоретической биофизики РАН:
— Сегодня лекторий проходит при поддержке Министерства информационных и социальных коммуникаций Московской области, которое помогло нам организовать масштабное мероприятие с использованием высоких технологий. Темп развития Sciencе talks растет, и с каждым разом мы выходим на новый уровень. Мы улучшили организацию, делаем анонсы, проговариваем со спикерами формат подачи, чтобы он был простым, но в то же время интересным, увлекательным. Наши лекторы разговаривают на языке, который понятен и неспециалистам - школьникам старших классов общеобразовательных школ, жителям и гостям наукоградов Московской области, интересующимся наукой, студентам, молодым ученым.
В этом году лекторий состоялся в Протвино уже второй раз и начался с экскурсии по АО «Протом». Медицинские физики, научные сотрудники ФТЦ «ФИАН» Александр Шемяков и Михаил Белихин показали уникальные пятиметровые протонные медицинские синхротроны «Прометеус», не имеющие аналогов в мире и предназначенные для лечения раковых опухолей. Передовые технологии, разработанные нашими учеными, позволяют поражать злокачественные опухоли, не нанося вреда здоровым органам.
Кирилл Болдырев, старший научный сотрудник, заведующий лабораторией Института спектроскопии РАН, представитель наукограда Троицка показал эксперименты с жидким азотом ураном и другими веществами, обладающими удивительными свойствами.
Кирилл БОЛДЫРЕВ:
— Я хочу показать, что наука – это красиво. Искренне считаю, что красота спасет мир, и ученые занимаются точно таким же творчеством, как художники или музыканты. Всё это одно и то же, красота — это то, что нас зажигает. Я хочу продемонстрировать, как вижу эту красоту, заинтересовать людей, которые, возможно, не знают про эту область. Мое выступление, скорее, развлекательное, потому что мы занимаемся квантовыми технологиями, и не хотелось бы наскучить слушателям с тем, что им непонятно.
Выступление старшего научного сотрудника Института биохимии и физиологии микроорганизмов из наукограда Пущино Андрея Шадрина было посвящено самым передовым технологиям борьбы с антибиотико-резистентной микрофлорой. Бактериофаги — вирусы, которые живут много миллионов лет и могут избирательно поглощать бактерии. Эти вирусы сегодня используются в качестве лекарства для уничтожения бактерий, которые невозможно убить антибиотиками.
Полина Глазкова, кандидат медицинских наук, старший научный сотрудник ГБУЗ МО МОНИКИ им. М.Ф. Владимирского в Москве рассказала об эффекте плацебо: как работает то, что не должно.
В качестве ведущего и модератора в этом году пригласили корреспондента телеканала 360 Дмитрия Степанищева.
Дмитрий СТЕПАНИЩЕВ, модератор Sciencе talks:
— Этот формат уже выдержал семь серий, и у него большое будущее, потому что сегодня люди с каждым днем всё больше и больше вовлекаются в науку, стараясь разнообразить свою жизнь. Несмотря на доступ к интернету, у нас никогда нет доступа к конкретным людям. А здесь - прямой контакт с кандидатами, с докторами наук, с молодежью. Когда выступают люди лет 30, понимающие аудиторию, тренды, общающиеся в одной возрастной группе, то может появиться искра реального, живого диалога, который позволит почувствовать: наука очень важна и интересна. Перед нами реальная молодежь, которая делает крутые открытия, прорывается вперед, берет человечество и отправляет покорять космос.
08.11.22 | 08.11.2022 Российская академия наук. Школа по оптике в Казани |
Сотрудники Троицкого обособленного подразделения (ТОП) ФИАН приняли участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2022) с 1 по 3 ноября в Академии наук Республики Татарстан в г. Казань.
Вдохновителем создания казанской молодежной научной школы-конференции по оптике и спектроскопии и ее бессменным проректором, начиная с 1997 и по 2020 год, был Виталий Владимирович Самарцев (1939-2021) - доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского ФИЦ “Казанский научный центр Российской академии наук”, заслуженный деятель науки Республики Татарстан и Российской Федерации. Организаторами школы стали Казанский (Приволжский) федеральный университет и Академия наук Республики Татарстан. Сопредседателями программного комитета КООС-2022 выступили: д.ф.-м.н., профессор, президент АН РТ Мякзюм Халимуллович Салахов и член-корреспондент РАН, руководитель Троицкого обособленного подразделения ФИАН Андрей Витальевич Наумов, выступивший на открытии Школы со вступительным словом о роли оптических и лазерных технологий в современной жизни и их связи с фундаментальными научными трудами академика Н.Г. Басова.
Слушателями Школы традиционно стали студенты, аспиранты и молодые учёные из различных городов России. В качестве приглашенных лекторов с 40-минутными лекциями по актуальным вопросам и современному состоянию исследований в области нелинейной и когерентной оптики, оптической спектроскопии перспективных материалов, когерентной лазерной спектроскопии, квантовой оптики, нанофотоники и зондовой микроскопии выступили известные российские учёные: д.ф.-м.н., профессор Овчинников О.В. (Воронежский государственный университет) «Коллоидные квантовые точки: взаимосвязь люминесценции с системой структурных дефектов», д.ф.-м.н., профессор Гайнутдинов Р.Х. (Казанский федеральный университет) «Проблемы квантовой физики и квантовых технологий», д.ф.-м.н., профессор Харинцев С.С. (Казанский федеральный университет) «Дизайн субволновых температурных профилей с помощью настраиваемых термоплазмонов», д.ф.-м.н. Маймистов А.И. (Национальный исследовательский университет МИФИ) «Нелинейные оптические свойства сред, имеющих топологические свойства. Феноменологический подход», к.ф.-м.н., с.н.с. Башаров А.М. (НИЦ «Курчатовский институт») «Оптика открытых квантовых осцилляторных систем в представлении алгебраической теории возмущений», к.ф.-м.н., с.н.с. Болдырев К.Н. (Институт спектроскопии РАН) «Спектроскопия высокого разрешения алмазных материалов с центрами окраски, к.ф.-м.н., доцент Гладуш Ю.Г. (Сколковский институт науки и технологий) «Фотоника углеродных наноструктур», д.ф.-м.н., профессор Сазонов С.В. (НИЦ «Курчатовский институт») «Оптико-акустические аналогии в исследованиях когерентных и нелинейных процессов», к.ф.-м.н., с.н.с. Гладуш М.Г. (Институт спектроскопии РАН, ТОП ФИАН, МПГУ) «Квантово-кинетическая теория фотолюминесценции», к.ф.-м.н., доцент Ковалюк В.В. (Московский институт электроники и математики им. А.Н. Тихонова, МПГУ, НИУ ВШЭ) «Интегральная фотоника».
2 ноября состоялось выездное научное заседание ячейки Young Minds Европейского физического общества, объединяющей студентов, аспирантов и молодых ученых МПГУ, ИСАН, ФИАН, ВШЭ и Сколтеха. Приглашенным докладчиком выступил профессор Фонда Александра фон Гумбольдта, доктор физ.-мат. наук, заведующий лабораториями в ФИЦ «Кристаллография и фотоника» РАН и Сеченовском университете, приглашенный профессор Ганноверского университета (Германия) Хайдуков Евгений Валерьевич с лекцией на тему «Медицинская фотоника». Состоялось обсуждение возможных направлений сотрудничества научных групп из Казани (Казанский федеральный университет, Академия наук Республики Татарстан, ФИЦ «Казанский научный центр РАН», Казанский национальный исследовательский технический университет КНИТУ – КАИ), Воронежа (Воронежский государственный университет) и Москвы (Физический институт им. П.Н. Лебедева РАН (ТОП ФИАН), Московский педагогический государственный университет, ФИЦ «Кристаллография и фотоника РАН», ФИЦ «Институт общей физики им. А.М. Прохорова РАН», Сколковский институт науки и технологий, НИУ «Высшая школа экономики»).
Молодыми участниками школы было представлено 35 устных и 34 стендовых доклада, среди которых проходил конкурс на лучший доклад. Дипломами Школы и памятными подарками были отмечены 8 участников, в т.ч. вк.м.н.с. лаборатории квантовых излучателей отдела перспективной фотоники и сенсорики ТОП ФИАН Александр Тарасевич, выступивший с докладом на тему «Особенности статистики фотонов люминесценции одиночных субмикронных кристаллов перовскитов MAPbI3», выполненным совместно с сотрудниками Института спектроскопии РАН, МПГУ и Университета Лунда.
Проведение следующей 27-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2023) запланировано на октябрь-ноябрь 2023 года в г. Казань.
https://new.ras.ru/activities/news/shkola-po-optike-v-kazani/
07.11.22 | 07.11.2022 Научная Россия. Школа по оптике в Казани |
Сотрудники ТОП ФИАН приняли участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2022) с 1 по 3 ноября в Академии наук Республики Татарстан в г. Казань.
Вдохновителем создания казанской молодежной научной школы-конференции по оптике и спектроскопии и ее бессменным проректором начиная с 1997 и по 2020 год был Виталий Владимирович Самарцев (1939-2021) - доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского ФИЦ “Казанский научный центр Российской академии наук”, заслуженный деятель науки Республики Татарстан и Российской Федерации. Организаторами школы стали Казанский (Приволжский) федеральный университет и Академия наук Республики Татарстан. Сопредседателями программного комитета КООС-2022 выступили: д.ф.-м.н., профессор, президент АН РТ Мякзюм Халимуллович Салахов и член-корреспондент РАН, руководитель ТОП ФИАН Андрей Витальевич Наумов, выступивший на открытии Школы со вступительным словом о роли оптических и лазерных технологий в современной жизни и их связи с фундаментальными научными трудами академика Н.Г. Басова.
Слушателями Школы традиционно стали студенты, аспиранты и молодые учёные из различных городов России. В качестве приглашенных лекторов с 40-минутными лекциями по актуальным вопросам и современному состоянию исследований в области нелинейной и когерентной оптики, оптической спектроскопии перспективных материалов, когерентной лазерной спектроскопии, квантовой оптики, нанофотоники и зондовой микроскопии выступили известные российские учёные: д.ф.-м.н., профессор Овчинников О.В. (Воронежский государственный университет) «Коллоидные квантовые точки: взаимосвязь люминесценции с системой структурных дефектов», д.ф.-м.н., профессор Гайнутдинов Р.Х. (Казанский федеральный университет) «Проблемы квантовой физики и квантовых технологий», д.ф.-м.н., профессор Харинцев С.С. (Казанский федеральный университет) «Дизайн субволновых температурных профилей с помощью настраиваемых термоплазмонов», д.ф.-м.н. Маймистов А.И. (Национальный исследовательский университет МИФИ) «Нелинейные оптические свойства сред, имеющих топологические свойства. Феноменологический подход», к.ф.-м.н., с.н.с. Башаров А.М. (НИЦ «Курчатовский институт») «Оптика открытых квантовых осцилляторных систем в представлении алгебраической теории возмущений», к.ф.-м.н., с.н.с. Болдырев К.Н. (Институт спектроскопии РАН) «Спектроскопия высокого разрешения алмазных материалов с центрами окраски, к.ф.-м.н., доцент Гладуш Ю.Г. (Сколковский институт науки и технологий) «Фотоника углеродных наноструктур», д.ф.-м.н., профессор Сазонов С.В. (НИЦ «Курчатовский институт») «Оптико-акустические аналогии в исследованиях когерентных и нелинейных процессов», к.ф.-м.н., с.н.с. Гладуш М.Г. (Институт спектроскопии РАН, ТОП ФИАН, МПГУ) «Квантово-кинетическая теория фотолюминесценции», к.ф.-м.н., доцент Ковалюк В.В. (Московский институт электроники и математики им. А.Н. Тихонова, МПГУ, НИУ ВШЭ) «Интегральная фотоника».
2 ноября состоялось выездное научное заседание ячейки Young Minds Европейского физического общества, объединяющей студентов, аспирантов и молодых ученых МПГУ, ИСАН, ФИАН, ВШЭ и Сколтеха. Приглашенным докладчиком выступил профессор Фонда Александра фон Гумбольдта, доктор физ.-мат. наук, заведующий лабораториями в ФИЦ «Кристаллография и фотоника» РАН и Сеченовском университете, приглашенный профессор Ганноверского университета (Германия) Хайдуков Евгений Валерьевич с лекцией на тему «Медицинская фотоника». Состоялось обсуждение возможных направлений сотрудничества научных групп из Казани (Казанский федеральный университет, Академия наук Республики Татарстан, ФИЦ «Казанский научный центр РАН», Казанский национальный исследовательский технический университет КНИТУ – КАИ), Воронежа (Воронежский государственный университет) и Москвы (Физический институт им. П.Н. Лебедева РАН (ТОП ФИАН), Московский педагогический государственный университет, ФИЦ «Кристаллография и фотоника РАН», ФИЦ «Институт общей физики им. А.М. Прохорова РАН», Сколковский институт науки и технологий, НИУ «Высшая школа экономики»).
Молодыми участниками школы было представлено 35 устных и 34 стендовых доклада, среди которых проходил конкурс на лучший доклад. Дипломами Школы и памятными подарками были отмечены 8 участников, в т.ч. вк.м.н.с. лаборатории квантовых излучателей отдела перспективной фотоники и сенсорики ТОП ФИАН Александр Тарасевич, выступивший с докладом на тему «Особенности статистики фотонов люминесценции одиночных субмикронных кристаллов перовскитов MAPbI3», выполненным совместно с сотрудниками Института спектроскопии РАН, МПГУ и Университета Лунда.
Проведение следующей 27-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2023) запланировано на октябрь-ноябрь 2023 года в г. Казань.
Информация и фото предоставлены отделом по связям с общественностью ФИАН
https://scientificrussia.ru/articles/skola-po-optike-v-kazani
27.12.22 | 27.12.2022 Российская газета. Эксперты назвали важнейшие научные достижения 2022 года |
Ученые, следуя современной моде, составляют научные "хит-парады" уходящего года. Своих лидеров называют как авторитетные журналы, в частности Science и Nature, так и многие другие издания, в том числе сетевые. В предпочтениях экспертов произошли серьезные изменения. Если два года подряд безоговорочным чемпионом были матричные РНК-вакцины от COVID-19, то в этом явного лидера нет. Но тренд очевиден. Первые места завоевала большая, очень сложная и дорогая научная техника.
Вселенная "Джеймса Уэбба"
Одним из самых ярких прорывов года признан долгожданный вывод в космос телескопа "Джеймс Уэбб". На сегодняшний день он самый мощный и дорогой в истории, обошелся почти в 10 миллиардов долларов. Рядом с ним даже "великий" телескоп "Хаббл" в лучшем случае "жигули" по сравнению с "мерседесом". Возможности нового телескопа настолько фантастичны, что многие из будущих открытий "Уэбба" мы не можем на сегодняшний день даже вообразить.
Уже первое сделанное "Уэббом" фото стало сенсацией. Оно показало раннюю Вселенную с самым высоким разрешением из когда-либо сделанных снимков. Изображение выделило участок неба размером примерно с песчинку, которую человек на Земле держит на расстоянии вытянутой руки, но на снимке видны тысячи галактик - такими, какими они были 4,6 млрд лет назад. Астрономы не ожидали увидеть в ранней Вселенной такое количество уже сформировавшихся правильных дисков галактик. За полгода работы "Уэбб" уже нашел самую далекую галактику, сделал несколько эпических фото, раскрыл тайну образования туманности Южное кольцо, рассказал о формировании галактик, нашел в далеких галактиках органические молекулы и др. Еще одна ключевая задача "Уэбба" - поиск экзопланет и их описание. Возможности аппарата позволяют лучше провести спектральный анализ, найти следы жизни, а значит, может быть, ответить на вопрос, который давно мучил человечество: одни ли мы во Вселенной?
Прорыв в термоядерном синтезе
В конце года произошло по-настоящему знаменательное событие, которого наука ожидала около 70 лет. Дело в том, что в ведущих лабораториях мира делались попытки осуществить термоядерный синтез, получив энергии больше, чем расходовалось на проведение этой реакции. На эти эксперименты потрачены многие миллиарды долларов, построены циклопические установки, но энергетически выгодный термояд не давался в руки. А бороться есть за что. Ведь термоядерный синтез мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. В земных условиях термоядерный синтез создают в основном двумя путями: с помощью установок токамак и с помощью лазеров, направляя много лучей на капсулу с изотопа водорода. Недавний прорыв был совершен как раз вторым способом на самой большой в мире лазерной установке размером почти с футбольное поле. Американские ученые в Ливерморской лаборатории стреляли из 192 лазеров по грануле с водородным топливом, вызвав термоядерную реакцию. В ходе эксперимента было передано 2,05 мегаджоуля энергии, что привело к получению 3,15 мегаджоулей. Такое превышение полученной энергии над затраченной получено впервые в мире. Этот эксперимент имеет огромное значение, потому что ученые продемонстрировали, что подобное в принципе реально. Конечно, для коммерческого использования понадобится немало лет, но путь проложен. Дальше, что называется, дело техники.
Геном человека расшифрован
Ученые впервые полностью расшифровали геном человека. Это поставило точку в исследованиях, которые длились более 30 лет, - старт проекта "Геном человека" начался в 1990 году. Большую часть генома человека расшифровали в 2001 году. Но восемь процентов человеческого генома так и оставалось в "серой" зоне. Загадкой оставалась часть ДНК, которая не кодирует белок, но отвечает за различные аспекты работы клеток. В этом году биологи из США, России, Великобритании и ряда других стран завершили расшифровку. Это фундаментальное достижение доступно для открытого использования всем членам мирового научного сообщества и может быть использовано в медико-генетических лабораториях для поиска мутаций, связанных с различными заболеваниями. Полная версия генома дает возможность более точно выявлять индивидуальные генетические особенности. Теперь новый, окончательно расшифрованный геном станет новым стандартом в генетике.
В рейтинги попали еще несколько громких достижений. Например, впервые человеку пересадили сердце генно-модифицированной свиньи. Таким образом, продемонстрировано, что генетически модифицированное сердце животного может функционировать как человеческое без немедленного отторжения организмом. Это еще один шаг к спасению жизней людей по всему миру.
Впервые в истории перелили человеку искусственную кровь. Эта созданная британскими специалистами технология сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови. Эритроциты вырастили из образцов крови людей из базы доноров Национальной службы здравоохранения Великобритании. Вначале из биоматериала выделили стволовые клетки, а затем уже дифференцировали их. Ученые отмечают, что с высокой вероятностью выращенные в лаборатории эритроциты будут жить дольше, чем те, которые поступают от доноров. В таком случае пациентам, которым нужны регулярные длительные переливания крови, их потребуется меньше.
Впервые в истории человеку перелили искусственную кровь, что сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови
Инженеры Массачусетского технологического института изобрели уникальный полимер на основе меламина, который легче пластика и прочнее стали. Полимер очень легкий, при этом, чтобы его пробить, требуется в шесть раз больше усилий, чем пуленепробиваемое стекло. Разрушить его оказалось в два раза сложнее, чем сталь. Материал также непроницаем для газов и жидкостей. Из него можно создавать не просто обычные предметы, но даже строить дома.
Вклад России
О достижениях отечественной науки "РГ" рассказали руководители ведущих институтов и отделений РАН.
Григорий Трубников, директор Объединенного института ядерных исследований, академик:
- В этом году во Флеровской лаборатории академиком Юрием Оганесяном открыты и изучены свойства сразу четырех новых изотопов сверхтяжелых элементов - московия, хассия, сиборгия и дармштадтия. В принципе каждый новый изотоп - это открытие в мировой науке. Важно подчеркнуть, что это не просто расширение наших знаний в ядерной физике. Новые изотопы могут найти применение в самых разных сферах, например в медицине, радиохимии и т.д.
Второй результат связан с проектом мегасайенс - комплекс NICA. Напомню, что он рассчитан на получение максимально плотной ядерной материи, которая была в первые мгновения Большого взрыва. С помощью коллайдера мы надеемся заглянуть на 14 миллиардов лет назад, в первые секунды рождения нашего мира.
Пуск первого каскада этого ускорителя состоялся два года назад при участии премьер-министра Михаила Мишустина. А сейчас вступил в действие второй каскад, что позволило начать основную программу по исследованию сверхплотной ядерной материи. Наш эксперимент - конкурент тем работам, которые уже много лет ведутся в американской Брукхейвенской лаборатории и немецкой в Дармштадте. Темп набора данных и их объем у нас выше, чем у коллег, в коллаборации участвуют ученые из 11 стран.
Третий яркий результат - новые данные об экзотических сигналах из космоса на Байкальском нейтринном телескопе. За короткий срок он обнаружил 11 событий, связанных с нейтрино сверхвысоких энергий - около 100 ТэВ. Важно подчеркнуть, что фактически каждая такая зарегистрированная частица - это серьезное событие в астрофизике. Дело в том, что нейтрино очень слабо взаимодействует с материей, которая для частицы фактически прозрачна. Скажем, почти десять лет в Антарктиде нейтрино ловит американский телескоп IceCube. За эти годы улов, прямо скажем, небогатый, около 100 нейтрино. Именно эта "некоммуникабельность" частицы позволяет науке приблизиться к первым моментам зарождения Вселенной, дает ключ к разгадке ее тайн.
Нам не только удалось зарегистрировать этот десяток сигналов, но и определить сектор неба - направление, откуда они прилетели. Это активный центр нашей галактики Млечный Путь.
Николай Колачевский, директор Физического института РАН, член-корреспондент РАН:
- Одно из самых перспективных сегодня направлений связано с квантовыми вычислениями. На них правительством выделено 100 миллиардов рублей. Так вот, в прошлом году мы первыми в стране создали квантовый вычислитель на 4 кубита (кубит - наименьшая единица информации в квантовых устройствах). Это уже достаточно для создания среднемасштабных квантовых устройств без коррекции ошибок. А до конца этого года, что называется под елочку, надеемся достичь 16-кубитного рубежа. Это серьезный шаг к созданию квантового компьютера.
Второй результат хотя и получен несколько лет назад, но особо заинтересует миллионы россиян. Речь о создании российского МРТ. Он был разработан в нашем институте, построен опытный образец, продемонстрирован медикам и промышленникам. Все признали, что наш аппарат ни в чем не уступает импортным, но тогда на этом все закончилось. В фаворе остался импорт, наша разработка осталась в проектах.
И вот сейчас санкции вынудили к ней вернуться, стало ясно, что стране нужны собственные томографы. Уже принято решение, что серийный выпуск будет налажен под эгидой "Росатома", а наш институт будет активно участвовать в этой работе. Словом, вплотную займемся инновациями. Сегодня это важнейший вопрос и для науки, и нашей экономики.
Александр Лутовинов, замдиректора Института космических исследований РАН:
- Сегодня самые важные работы российской науки в области космоса связаны с уникальными исследованиями, которые ведет обсерватория "Спектр-РГ". Они стартовали в середине 2019 года. За это время уже удалось построить самую полную карту Вселенной в рентгеновском диапазоне.
Сейчас с помощью российского телескопа ART-XC им. М.Н. Павлинского, установленного на борту обсерватории, мы создаем подробную карту нашей галактики Млечный Путь. На небе она выглядит в виде узкой полоски звезд. Мы ее медленно сканируем с экспозицией, которая на порядок глубже, чем это делали при обзоре всего неба. Почему? Дело в том, что галактика "забита" пылью и газом, что не позволяет разглядеть многие детали, особенно на дальних окраинах. Поэтому, чтобы провести перепись "населения" галактики, приходится кардинально менять методы исследования. Эта работа началась в марте этого года и завершится в марте будущего. Уже удалось разглядеть сотни новых объектов, в том числе таких экзотических, как "черные дыры", "белые карлики", нейтронные звезды.
Как известно, после введения санкций установленный на аппарате немецкий телескоп eROSITA приостановил работу, но мы сумели достаточно быстро предложить новую программу наблюдений и научных задач, с которыми наш АRT-XC вполне успешно справляется. В частности, ряд задач решается в рамках совместных работ с коллегами из США, Южной Африки и ряда других стран.
Михаил Кирпичников, академик-секретарь Отделения биологических наук РАН:
- В Институте молекулярной биологии им. В.А. Энгельгардта изучен один из принципиальных механизмов развития болезни Альцгеймера. Для этого ученые вначале смоделировали эту болезнь на трансгенных нематодах (один из видов червей). А затем на этих моделях показали, как в мозге образуются так называемые белковые агрегаты, которые и вызывают болезнь. По итогам этого исследования предложен новый фармакологический агент - тетрапептид HAEE, который проходит гематоэнцефалический барьер и блокирует патологический процесс. На его основе можно создавать новые препараты для предотвращения болезни.
В МГУ проведены уникальные исследования микронасекомых. В чем суть работы? Миниатюризация - распространенный тренд не только в эволюции животных, но и в развитии технологий. У насекомых она привела к появлению видов, размеры которых составляют десятые доли миллиметра, что сопоставимо с размерами одноклеточных организмов, например амебы. Но в то же время микронасекомые - это многоклеточные животные, которые демонстрируют сложные формы поведения и передвижения, например "плавания" в воздухе. Их нервная система может служить удобной моделью для изучения когнитивных процессов. В недалеком будущем знания о передвижении микронасекомых могут помочь в создании микродронов. Полученные впервые в мире фундаментальные и прикладные результаты были опубликованы в 2022 г. в журналах группы Nature.
Впервые в мире на основе структурно модифицированных вирусов растений учеными МГУ созданы прототипы вакцин против сибирской язвы, COVID-19, ротавирусной инфекции, а учеными Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН разработан прототип мРНК-вакцины.
Владимир Стародубов, академик- секретарь Отделения медицинских наук РАН:
- В Санкт-Петебургском Институте экспериментальной медицины создана бивалентная вакцина от COVID-19 и гриппа. Она сконструирована на основе живого реплицирующегося вируса гриппа, в геном которого генно-инженерными методами внесены иммуногенные фрагменты коронавируса.
До регистрации клинические испытания были проведены на 120 тыс. детей в возрасте от трех лет, взрослых и пожилых людях. Всего в РФ произведено более 100 млн доз.
Назальное применение вакцины стимулирует локальный иммунитет в верхних дыхательных путях, что препятствует дальнейшему размножению вирусов и их распространению в окружающую среду. Такая бивалентная вакцина обеспечит комбинированную защиту населения от сезонных вирусов гриппа, а также от возможных вариантов коронавируса.
Этого события мир ждал более 70 лет. Впервые в ходе термоядерной реакции получено энергии больше, чем затрачено, что открывает человечеству путь к практически неисчерпаемым ее источникам
В НМИЦ детской травматологии и ортопедии им. Г.И. Турнера созданы транспедикулярные (?) системы 3,5 мм для коррекции врожденной деформации позвоночника на фоне нарушения формирования, слияния и сегментации позвонков в грудном и поясничном отделах, а также при тяжелых нестабильных переломах тел позвонков у детей раннего возраста. Крайне важно, что ученым в сотрудничестве с уральским заводом "Медин-Урал" удалось организовать импортозамещающее производство наборов инструментов и имплантатов для детской спинальной хирургии у детей от одного года до трех-четырех лет.
Николай Макаров, академик-секретарь Отделения историко-филологических наук РАН:
- В этом году 38 экспедиций вели работы от Калининграда до Чукотки, от Крыма и Дагестана до Новгорода и Вологды. Раскопки проходили также в Абхазии, Узбекистане, Казахстане и на Шпицбергене (Норвегия). Панорама находок, сделанных в разных точках страны, от западных до восточных границ, показывает цельность России и многообразие ее культуры со сложной историей.
Ученые раскопали несколько десятков уникальных артефактов - в частности, фрагменты фресок XII века в Новгороде, фортификационные объекты Великой Бактрийской стены, вскрыли новые культурные слои в древнем крымском городе Фанагория. А настоящей находкой года стала печать князя Владимира Мономаха. Она обнаружена в древнем прусском поселении "Привольное-1" под Калининградом.
Этот памятник археологии XI-XIII веков относится к "позднеязыческому" времени - периоду между эпохой викингов и началом крестоносной экспансии в Пруссию Тевтонского ордена. Она указывает на важнейшее значение этого древнего поселения для контактов пруссов и жителей древней Руси.
Неожиданный сюрприз преподнесли раскопки села Чаадаево под городом Муромом. Он всегда воспринимался как языческий дальний угол, захолустье, но мы здесь открыли прекрасную древнерусскую культуру. Найдено много элитных вещей, которые принадлежали местной знати. А самое главное, что впервые удалось полностью выявить планировку русского села XI-XII веков. Всегда считалось, что она была примитивной. Но в Чаадаеве она оказалась сложной, что необычно для сельской жизни того времени.
27.12.22 | 27.12.2022 Донецкий тормозок. Эксперты назвали важнейшие научные достижения 2022 года |
Ученые, следуя современной моде, составляют научные «хит-парады» уходящего года. Своих лидеров называют как авторитетные журналы, в частности Science и Nature, так и многие другие издания, в том числе сетевые. В предпочтениях экспертов произошли серьезные изменения. Если два года подряд безоговорочным чемпионом были матричные РНК-вакцины от COVID-19, то в этом явного лидера нет. Но тренд очевиден. Первые места завоевала большая, очень сложная и дорогая научная техника.
Вселенная «Джеймса Уэбба»
Одним из самых ярких прорывов года признан долгожданный вывод в космос телескопа «Джеймс Уэбб». На сегодняшний день он самый мощный и дорогой в истории, обошелся почти в 10 миллиардов долларов. Рядом с ним даже «великий» телескоп «Хаббл» в лучшем случае «жигули» по сравнению с «мерседесом». Возможности нового телескопа настолько фантастичны, что многие из будущих открытий «Уэбба» мы не можем на сегодняшний день даже вообразить.
Уже первое сделанное «Уэббом» фото стало сенсацией. Оно показало раннюю Вселенную с самым высоким разрешением из когда-либо сделанных снимков. Изображение выделило участок неба размером примерно с песчинку, которую человек на Земле держит на расстоянии вытянутой руки, но на снимке видны тысячи галактик — такими, какими они были 4,6 млрд лет назад. Астрономы не ожидали увидеть в ранней Вселенной такое количество уже сформировавшихся правильных дисков галактик. За полгода работы «Уэбб» уже нашел самую далекую галактику, сделал несколько эпических фото, раскрыл тайну образования туманности Южное кольцо, рассказал о формировании галактик, нашел в далеких галактиках органические молекулы и др. Еще одна ключевая задача «Уэбба» — поиск экзопланет и их описание. Возможности аппарата позволяют лучше провести спектральный анализ, найти следы жизни, а значит, может быть, ответить на вопрос, который давно мучил человечество: одни ли мы во Вселенной?
Прорыв в термоядерном синтезе
В конце года произошло по-настоящему знаменательное событие, которого наука ожидала около 70 лет. Дело в том, что в ведущих лабораториях мира делались попытки осуществить термоядерный синтез, получив энергии больше, чем расходовалось на проведение этой реакции. На эти эксперименты потрачены многие миллиарды долларов, построены циклопические установки, но энергетически выгодный термояд не давался в руки. А бороться есть за что. Ведь термоядерный синтез мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. В земных условиях термоядерный синтез создают в основном двумя путями: с помощью установок токамак и с помощью лазеров, направляя много лучей на капсулу с изотопа водорода. Недавний прорыв был совершен как раз вторым способом на самой большой в мире лазерной установке размером почти с футбольное поле. Американские ученые в Ливерморской лаборатории стреляли из 192 лазеров по грануле с водородным топливом, вызвав термоядерную реакцию. В ходе эксперимента было передано 2,05 мегаджоуля энергии, что привело к получению 3,15 мегаджоулей. Такое превышение полученной энергии над затраченной получено впервые в мире. Этот эксперимент имеет огромное значение, потому что ученые продемонстрировали, что подобное в принципе реально. Конечно, для коммерческого использования понадобится немало лет, но путь проложен. Дальше, что называется, дело техники.
Геном человека расшифрован
Ученые впервые полностью расшифровали геном человека. Это поставило точку в исследованиях, которые длились более 30 лет, — старт проекта «Геном человека» начался в 1990 году. Большую часть генома человека расшифровали в 2001 году. Но восемь процентов человеческого генома так и оставалось в «серой» зоне. Загадкой оставалась часть ДНК, которая не кодирует белок, но отвечает за различные аспекты работы клеток. В этом году биологи из США, России, Великобритании и ряда других стран завершили расшифровку. Это фундаментальное достижение доступно для открытого использования всем членам мирового научного сообщества и может быть использовано в медико-генетических лабораториях для поиска мутаций, связанных с различными заболеваниями. Полная версия генома дает возможность более точно выявлять индивидуальные генетические особенности. Теперь новый, окончательно расшифрованный геном станет новым стандартом в генетике.
В рейтинги попали еще несколько громких достижений. Например, впервые человеку пересадили сердце генно-модифицированной свиньи. Таким образом, продемонстрировано, что генетически модифицированное сердце животного может функционировать как человеческое без немедленного отторжения организмом. Это еще один шаг к спасению жизней людей по всему миру.
Впервые в истории перелили человеку искусственную кровь. Эта созданная британскими специалистами технология сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови. Эритроциты вырастили из образцов крови людей из базы доноров Национальной службы здравоохранения Великобритании. Вначале из биоматериала выделили стволовые клетки, а затем уже дифференцировали их. Ученые отмечают, что с высокой вероятностью выращенные в лаборатории эритроциты будут жить дольше, чем те, которые поступают от доноров. В таком случае пациентам, которым нужны регулярные длительные переливания крови, их потребуется меньше.
Впервые в истории человеку перелили искусственную кровь, что сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови
Инженеры Массачусетского технологического института изобрели уникальный полимер на основе меламина, который легче пластика и прочнее стали. Полимер очень легкий, при этом, чтобы его пробить, требуется в шесть раз больше усилий, чем пуленепробиваемое стекло. Разрушить его оказалось в два раза сложнее, чем сталь. Материал также непроницаем для газов и жидкостей. Из него можно создавать не просто обычные предметы, но даже строить дома.
Вклад России
О достижениях отечественной науки «РГ» рассказали руководители ведущих институтов и отделений РАН.
Григорий Трубников, директор Объединенного института ядерных исследований, академик:
— В этом году во Флеровской лаборатории академиком Юрием Оганесяном открыты и изучены свойства сразу четырех новых изотопов сверхтяжелых элементов — московия, хассия, сиборгия и дармштадтия. В принципе каждый новый изотоп — это открытие в мировой науке. Важно подчеркнуть, что это не просто расширение наших знаний в ядерной физике. Новые изотопы могут найти применение в самых разных сферах, например в медицине, радиохимии и т.д.
Второй результат связан с проектом мегасайенс — комплекс NICA. Напомню, что он рассчитан на получение максимально плотной ядерной материи, которая была в первые мгновения Большого взрыва. С помощью коллайдера мы надеемся заглянуть на 14 миллиардов лет назад, в первые секунды рождения нашего мира.
Пуск первого каскада этого ускорителя состоялся два года назад при участии премьер-министра Михаила Мишустина. А сейчас вступил в действие второй каскад, что позволило начать основную программу по исследованию сверхплотной ядерной материи. Наш эксперимент — конкурент тем работам, которые уже много лет ведутся в американской Брукхейвенской лаборатории и немецкой в Дармштадте. Темп набора данных и их объем у нас выше, чем у коллег, в коллаборации участвуют ученые из 11 стран.
Третий яркий результат — новые данные об экзотических сигналах из космоса на Байкальском нейтринном телескопе. За короткий срок он обнаружил 11 событий, связанных с нейтрино сверхвысоких энергий — около 100 ТэВ. Важно подчеркнуть, что фактически каждая такая зарегистрированная частица — это серьезное событие в астрофизике. Дело в том, что нейтрино очень слабо взаимодействует с материей, которая для частицы фактически прозрачна. Скажем, почти десять лет в Антарктиде нейтрино ловит американский телескоп IceCube. За эти годы улов, прямо скажем, небогатый, около 100 нейтрино. Именно эта «некоммуникабельность» частицы позволяет науке приблизиться к первым моментам зарождения Вселенной, дает ключ к разгадке ее тайн.
Нам не только удалось зарегистрировать этот десяток сигналов, но и определить сектор неба — направление, откуда они прилетели. Это активный центр нашей галактики Млечный Путь.
Николай Колачевский, директор Физического института РАН, член-корреспондент РАН:
— Одно из самых перспективных сегодня направлений связано с квантовыми вычислениями. На них правительством выделено 100 миллиардов рублей. Так вот, в прошлом году мы первыми в стране создали квантовый вычислитель на 4 кубита (кубит — наименьшая единица информации в квантовых устройствах). Это уже достаточно для создания среднемасштабных квантовых устройств без коррекции ошибок. А до конца этого года, что называется под елочку, надеемся достичь 16-кубитного рубежа. Это серьезный шаг к созданию квантового компьютера.
Второй результат хотя и получен несколько лет назад, но особо заинтересует миллионы россиян. Речь о создании российского МРТ. Он был разработан в нашем институте, построен опытный образец, продемонстрирован медикам и промышленникам. Все признали, что наш аппарат ни в чем не уступает импортным, но тогда на этом все закончилось. В фаворе остался импорт, наша разработка осталась в проектах.
И вот сейчас санкции вынудили к ней вернуться, стало ясно, что стране нужны собственные томографы. Уже принято решение, что серийный выпуск будет налажен под эгидой «Росатома», а наш институт будет активно участвовать в этой работе. Словом, вплотную займемся инновациями. Сегодня это важнейший вопрос и для науки, и нашей экономики.
Александр Лутовинов, замдиректора Института космических исследований РАН:
— Сегодня самые важные работы российской науки в области космоса связаны с уникальными исследованиями, которые ведет обсерватория «Спектр-РГ». Они стартовали в середине 2019 года. За это время уже удалось построить самую полную карту Вселенной в рентгеновском диапазоне.
Сейчас с помощью российского телескопа ART-XC им. М.Н. Павлинского, установленного на борту обсерватории, мы создаем подробную карту нашей галактики Млечный Путь. На небе она выглядит в виде узкой полоски звезд. Мы ее медленно сканируем с экспозицией, которая на порядок глубже, чем это делали при обзоре всего неба. Почему? Дело в том, что галактика «забита» пылью и газом, что не позволяет разглядеть многие детали, особенно на дальних окраинах. Поэтому, чтобы провести перепись «населения» галактики, приходится кардинально менять методы исследования. Эта работа началась в марте этого года и завершится в марте будущего. Уже удалось разглядеть сотни новых объектов, в том числе таких экзотических, как «черные дыры», «белые карлики», нейтронные звезды.
Как известно, после введения санкций установленный на аппарате немецкий телескоп eROSITA приостановил работу, но мы сумели достаточно быстро предложить новую программу наблюдений и научных задач, с которыми наш АRT-XC вполне успешно справляется. В частности, ряд задач решается в рамках совместных работ с коллегами из США, Южной Африки и ряда других стран.
Михаил Кирпичников, академик-секретарь Отделения биологических наук РАН:
— В Институте молекулярной биологии им. В.А. Энгельгардта изучен один из принципиальных механизмов развития болезни Альцгеймера. Для этого ученые вначале смоделировали эту болезнь на трансгенных нематодах (один из видов червей). А затем на этих моделях показали, как в мозге образуются так называемые белковые агрегаты, которые и вызывают болезнь. По итогам этого исследования предложен новый фармакологический агент — тетрапептид HAEE, который проходит гематоэнцефалический барьер и блокирует патологический процесс. На его основе можно создавать новые препараты для предотвращения болезни.
В МГУ проведены уникальные исследования микронасекомых. В чем суть работы? Миниатюризация — распространенный тренд не только в эволюции животных, но и в развитии технологий. У насекомых она привела к появлению видов, размеры которых составляют десятые доли миллиметра, что сопоставимо с размерами одноклеточных организмов, например амебы. Но в то же время микронасекомые — это многоклеточные животные, которые демонстрируют сложные формы поведения и передвижения, например «плавания» в воздухе. Их нервная система может служить удобной моделью для изучения когнитивных процессов. В недалеком будущем знания о передвижении микронасекомых могут помочь в создании микродронов. Полученные впервые в мире фундаментальные и прикладные результаты были опубликованы в 2022 г. в журналах группы Nature.
Впервые в мире на основе структурно модифицированных вирусов растений учеными МГУ созданы прототипы вакцин против сибирской язвы, COVID-19, ротавирусной инфекции, а учеными Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН разработан прототип мРНК-вакцины.
Владимир Стародубов, академик- секретарь Отделения медицинских наук РАН:
— В Санкт-Петебургском Институте экспериментальной медицины создана бивалентная вакцина от COVID-19 и гриппа. Она сконструирована на основе живого реплицирующегося вируса гриппа, в геном которого генно-инженерными методами внесены иммуногенные фрагменты коронавируса.
До регистрации клинические испытания были проведены на 120 тыс. детей в возрасте от трех лет, взрослых и пожилых людях. Всего в РФ произведено более 100 млн доз.
Назальное применение вакцины стимулирует локальный иммунитет в верхних дыхательных путях, что препятствует дальнейшему размножению вирусов и их распространению в окружающую среду. Такая бивалентная вакцина обеспечит комбинированную защиту населения от сезонных вирусов гриппа, а также от возможных вариантов коронавируса.
Этого события мир ждал более 70 лет. Впервые в ходе термоядерной реакции получено энергии больше, чем затрачено, что открывает человечеству путь к практически неисчерпаемым ее источникам
В НМИЦ детской травматологии и ортопедии им. Г.И. Турнера созданы транспедикулярные (?) системы 3,5 мм для коррекции врожденной деформации позвоночника на фоне нарушения формирования, слияния и сегментации позвонков в грудном и поясничном отделах, а также при тяжелых нестабильных переломах тел позвонков у детей раннего возраста. Крайне важно, что ученым в сотрудничестве с уральским заводом «Медин-Урал» удалось организовать импортозамещающее производство наборов инструментов и имплантатов для детской спинальной хирургии у детей от одного года до трех-четырех лет.
Николай Макаров, академик-секретарь Отделения историко- филологических наук РАН:
— В этом году 38 экспедиций вели работы от Калининграда до Чукотки, от Крыма и Дагестана до Новгорода и Вологды. Раскопки проходили также в Абхазии, Узбекистане, Казахстане и на Шпицбергене (Норвегия). Панорама находок, сделанных в разных точках страны, от западных до восточных границ, показывает цельность России и многообразие ее культуры со сложной историей.
Ученые раскопали несколько десятков уникальных артефактов — в частности, фрагменты фресок XII века в Новгороде, фортификационные объекты Великой Бактрийской стены, вскрыли новые культурные слои в древнем крымском городе Фанагория. А настоящей находкой года стала печать князя Владимира Мономаха. Она обнаружена в древнем прусском поселении «Привольное-1» под Калининградом.
Этот памятник археологии XI-XIII веков относится к «позднеязыческому» времени — периоду между эпохой викингов и началом крестоносной экспансии в Пруссию Тевтонского ордена. Она указывает на важнейшее значение этого древнего поселения для контактов пруссов и жителей древней Руси.
Неожиданный сюрприз преподнесли раскопки села Чаадаево под городом Муромом. Он всегда воспринимался как языческий дальний угол, захолустье, но мы здесь открыли прекрасную древнерусскую культуру. Найдено много элитных вещей, которые принадлежали местной знати. А самое главное, что впервые удалось полностью выявить планировку русского села XI-XII веков. Всегда считалось, что она была примитивной. Но в Чаадаеве она оказалась сложной, что необычно для сельской жизни того времени.
https://trmzk.ru/20221227-eksperty-nazvali-vazhnejshie-nauchnye-dostizheniya-2022-goda.dzen
30.12.22 | 30.12.2022 Смотрим. Топ-10 достижений российской науки в 2022 году |
Российским учёным в этом году пришлось быстро приспосабливаться к новым условиям и решать непредвиденные задачи, чтобы не останавливать развития отечественной науки.
Исследователи вновь доказали, что могут реализовывать смелые идеи даже в самой непростой международной обстановке. В этом им помогли и правительственные гранты — без финансовой поддержки государства многие проекты остались бы только на бумаге.
Уникальный ядерный реактор
В сентябре четвёртый энергоблок Белоярской АЭС в Свердловской области первым в мире был полностью переведён на инновационное МОКС-топливо.
Это позволит увеличить количество топлива, доступного для атомной энергетики, в десятки раз, рассказал директор атомной электростанции Иван Сидоров.
Но, самое главное, в реакторе БН-800 четвёртого энергоблока можно применять отработавшее ядерное топливо других АЭС. Конечно, после соответствующей обработки.
В отличие от обогащённого урана, который традиционно применяется в атомной энергетике, МОКС-топливо состоит из оксидов плутония и обеднённого урана. Такое топливо производят на предприятиях Росатома в Красноярском крае.
Оксид плутония получают при переработке отработавшего ядерного топлива, а оксид обеднённого урана — из так называемых вторичных хвостов производства обогащённого урана.
Это позволяет пустить в дело "излишки" производства и снизить необходимость добычи урана для ядерных реакторов — несомненно, полезный шаг с точки зрения экологии.
Имплантат, предсказывающий речь
Учёные из НИУ ВШЭ и Московского государственного медико-стоматологического университета им. А.И. Евдокимова разработали нейросеть, которая прогнозирует слова, которые хочет сказать человек, по активности его мозга.
Точность алгоритма составила 55% и 75% для двух испытуемых. Для этого первому вживили в небольшой участок мозга всего шесть электродов, а второму – восемь.
Похожую точность в других исследованиях показывают устройства с электродами, расположенными по всей поверхности мозга.
Поясним, что электроды были внедрены в мозг людей для терапии тяжёлой эпилепсии, а не просто ради эксперимента.
Компактное устройство можно будет имплантировать под местной анестезией, что обеспечит более безопасное вмешательство, чем существующие аналоги.
Платформа "Северный полюс"
Ледостойкая платформа "Северный полюс" отправилась в первую арктическую экспедицию в августе 2022 года.
Это уникальное научно-исследовательское судно предназначено для круглогодичных экспедиций в высоких широтах Северного Ледовитого океана.
Главная ценность платформы – 15 научных лабораторий, в которых будет изучаться природа Арктики.
На "Северном полюсе" будут проводиться геологические, акустические, геофизические и океанографические исследования. На одной из его палуб оборудована взлётно-посадочная площадка для вертолётов.
Судно способно проходить во льдах без помощи ледокола и обеспечивает комфортные условия для жизни экипажа и научного персонала при температуре до -50°C и влажности 85%.
Платформа открывает новую веху в полевых исследованиях Арктики. Экспедиции на дрейфующих льдинах, первая из которых прошла в северных широтах ещё в 1937 году, ушли в прошлое. Ледовые станции стали слишком небезопасны в условиях таяния арктических льдов.
Аналог самого сложного в мире минерала
Кристаллографы из СПбГУ с коллегами из Чехии и США получили в лабораторных условиях вещество, похожее на минерал юингит.
Он имеет самую сложную структуру на Земле из всех известных.
Кроме фундаментального научного интереса это исследование несёт и практическую ценность.
В основе юингита — нанокластеры из атомов урана и карбонатных групп. Когда учёные разберутся в "превращениях" юингита, они смогут, например, попытаться сделать процесс добычи и переработки урана менее опасным для человека.
Российский квантовый компьютер
В 2022 году учёные из Российского квантового центра запатентовали физическую реализацию компьютера на многоуровневых квантовых ячейках памяти — кудитах.
Если кубиты — квантовые биты — могут принимать значения 0, 1, а также находиться в состоянии суперпозиции, то кудиты могут "содержать" три, четыре значения и более. А это значит, они могут хранить и обрабатывать ещё больше информации, чем "традиционные" кубиты.
При этом архитектура, предложенная российскими учёными — не просто теория. Универсальный квантовый компьютер с облачным доступом планируется создать уже через пару лет.
А сама облачная платформа для квантовых вычислений команды QBoard и Российского Квантового Центра уже существует.
В то же время учёные из НИТУ МИСИС и МФТИ создали первый в России квантовый процессор на 4 кубитах, который достиг 97% точности двухкубитных операций. Эксперимент был проведён 8 ноября 2022 года.
В обновлённую дорожную карту "Квантовые вычисления" правительства России входит создание квантового университета и программ дополнительного образования в этой сфере.
Импортозамещение в области квантовых технологий
Российский разработчик электронных устройств на основе квантовых технологий QRate представил детекторы одиночных фотонов, частиц света, которые смогут заменить иностранные устройства в условиях международных санкций в отношении России.
Такие детекторы являются ключевым компонентом в системах квантовой криптографии. Но применяются они и в телекоммуникациях, спектроскопии, разработке лекарственных препаратов, анализе ДНК и многих других научных областях.
Назальная вакцина от коронавируса
В 2022 году в гражданский оборот вышла назальная вакцина от коронавирусной инфекции, разработанная научным центром имени Гамалеи. Её предлагается применять в качестве бустера — через год после вакцинации стандартной вакциной от ковида.
Такая вакцина вводится в организм через нос и не требует использования иглы.
Самая тесная двойная чёрная дыра
Международная группа учёных получила новые доказательства наличия двойной сверхмассивной чёрной дыры в галактике OJ 287.
Вторая, менее массивная чёрная дыра вращается вокруг первой, дважды пронзая её аккреционный диск каждые 12 лет.
Новые данные были получены при участии космического проекта "Радиоастрон", который возглавляет Астрокосмический центр ФИАН и осуществляется при поддержке Роскосмоса.
Система OJ 287 является единственным на сегодняшний день известным представителем тесной двойной сверхмассивной чёрной дыры.
Первый спутник "Сферы" выведен на орбиту
22 октября 2022 года ракета-носитель "Союз-2.1б" стартовала с космодрома Восточный с первым аппаратом федерального проекта "Сфера" — "Скиф-Д" — на борту.
Роскосмос сообщает, что новый спутник позволит отработать технологии предоставления широкополосного доступа в интернет на всей территории России. Аналог американской системы Starlink.
В "Сферу" должны будут войти пять спутниковых группировок связи и пять группировок дистанционного зондирования Земли. В общей сложности для проекта "Сфера" будут созданы более 600 космических аппаратов.
Для этой и других нужд в России в будущих годах будет запущено серийное производство спутников.
Математическая модель сердечно-сосудистой системы
Российские исследователи из НИУ "Московский институт электронной техники" (МИЭТ) создали уникальное программное обеспечение. Оно позволяет прогнозировать, как тот или иной имплантат будет взаимодействовать с сердечно-сосудистой системой конкретного пациента.
Благодаря этому при разработке каждого отдельного устройства можно будет учесть индивидуальные особенности кровообращения пациента.
Это очень важный вклад российских учёных в персонализированную медицину будущего.
29.12.22 | 29.12.2022 Научная Россия. Укротители света. Интервью о люминесцентных материалах с химиком из ФИАН Ильей Тайдаковым |
Как возникает люминесценция и есть ли в ней польза, помимо красоты? Что такое органические светодиоды, и где они применяются? Можно ли измерять температуру светом? Об этом и многом другом ― в интервью с доктором химических наук, ведущим научным сотрудником лаборатории «Молекулярная спектроскопия люминесцентных материалов» ФИАН Ильей Викторовичем Тайдаковым.
― Откуда берется эффект люминесценции и как мы используем его на практике?
― Люминесценция — наверное, одно из самых красивых физических явлений, и человечеству оно знакомо с древности. Аристотель, например, упоминал о свечении моря из-за, как мы сейчас знаем, микроскопических организмов. Считается, что люминесценция впервые была описана научным образом Робертом Бойлем в середине XVII в. Он экспериментировал с алмазами и обнаружил, что после облучения солнцем они могут определенное короткое время светиться в темноте. Потом известный алхимик Винченцо Кашароло из Болоньи смог синтезировать первый искусственный люминесцентный материал. Он прокаливал тяжелый шпат в печи и обнаружил, что этот минерал после облучения солнцем светится в темноте достаточно продолжительное время. Потом был открыт фосфор, классический пример хемилюминесценции.
Большого интереса явление не вызывало приблизительно до середины XX в., когда было обнаружено, что оно может быть крайне полезно. В частности, основатель нашего института Сергей Иванович Вавилов решал с помощью люминесценции задачи освещения, химического анализа и визуализации тех объектов, которые не видно глазом. Вопросы люминесценции стали исследоваться достаточно широко, и в настоящее время ее изучение стало мощной отраслью современной химии, физики, материаловедения.
Что такое люминесценция? Это холодное свечение. Согласно классическому определению С.И. Вавилова, люминесценция есть «избыточное над тепловым излучение тела, длящееся определенное количество (более 10-10 секунды) времени». Ограничение по времени необходимо нам, чтобы отличить люминесценцию от других явлений, таких, как, скажем, отражение или рассеяние. Все очень просто. Например, мы знаем, что, если взять тело с температурой выше абсолютного нуля, то есть примерно ̶ 273º C, то оно испускает электромагнитные волны. В определенном диапазоне мы можем чувствовать эти электромагнитные волны как ощущение тепла. Это инфракрасное излучение. По мере того как тело нагревается, это излучение будет смещаться по спектру из инфракрасной области в красную. Если мы, допустим, будем прибавлять напряжение лампочке, сначала она просто нагреется, потом при достижении температуры нити приблизительно 500–600º C начнет слабо светиться. И с ростом напряжения она будет светиться все ярче и ярче ― максимум будет смещаться по спектру.
А теперь возьмем светящиеся палочки. Если мы разломим такую палочку и встряхнем ее, то за счет химической реакции возникает свечение. Я могу совершенно спокойно держать в руках палочку, цвет свечения которой соответствует температуре нагретого тела порядка 3000º C. Однако в реальности никакого значительного тепла не выделяется. Это избыточное над тепловым излучение, то есть тело на самом деле холодное, а энергия выделяется в виде света.
У люминесценции могут быть самые различные источники возбуждения. Если направить ультрафиолетовый свет на сосуды, содержащие люминесцентный краситель, то мы увидим, что невидимое излучение ультрафиолета поглощается, а в видимом диапазоне в красной и зеленой областях выделяется свет. Естественно, при этом практически никакого нагрева нет.
Люминесцировать могут не только специально приготовленные химические соединения. Если мы направим ультрафиолетовый свет на кристалл оксида алюминия, содержащего примесь ионов трехвалентного хрома, он же рубин, мы увидим, что наблюдается яркое красное свечение. Этот эффект используется в том числе и в лазерах. Здесь, в ФИАН, был создан первый в Советском Союзе лазер на рубиновом стержне.
В быту нам знакомы люминесцентные метки на банкнотах, позволяющие кассиру в банке проверить подлинность бумаг. Есть люминесценция, вызываемая пучками электронов или рентгеновским излучением. На них работают флюорографические системы в поликлинике, а также электронно-лучевые трубки в телевизорах и осциллографах. Применение люминесценции чрезвычайно разнообразно и интересно, оно имеет громадное практическое значение. Вы можете с помощью красителя пометить трещины на поверхности детали и, облучив ее фонарем, увидеть, где краситель распределился, и обнаружить дефекты, невидимые для невооруженного глаза.
― Чем занимается ваша лаборатория? Какие в ней проводят исследования?
― Можно выделить три основных направления. Первое связано с исследованием люминесцентных органических красителей. Эта работа ведется в сотрудничестве с Институтом органической химии РАН. Мы изучаем новые красители, необходимые для создания органических светоизлучающих устройств и органических солнечных батарей. Роль красителя там сводится к тому, что он поглощает видимый свет и передает его на внутреннюю структуру батареи, и таким образом происходит разделение зарядов. В органическом светоизлучающем диоде происходит обратный процесс - возбужденные молекулы, образующиеся при слиянии носителей зарядов, сбрасывают избыточную энергию в виде света.
Второе направление, наверное, самое для нас главное, ― это исследование люминесцентных материалов на основе так называемых лантаноидов. Это группа элементов-металлов с атомными номерами 57-71 в периодической таблице. Начинается ряд лантаном, заканчивается лютецием. Основная особенность этих элементов ― частично или полностью заполненная f-электронная оболочка. Она экранирована внешними электронами, и внутри нее возможны электронные переходы. Они отвечают за то, как свет поглощается и, самое главное, как свет излучается. Конечно, мы изучаем не сами металлы, а образуемые ими трехзарядные ионы в составе более сложных так называемых, координационных соединений, где ион лантаноида дополнительно связан с различным окружением из органических молекул.
Хотя ионы лантаноидов могут люминесцировать сами по себе, правильно подобранное окружение позволяет усилить этот эффект многократно.
В лаборатории мы всесторонне изучаем внутренние механизмы передачи энергии в координационных соединениях, чтобы понять, как сделать их люминесценцию более эффективной, или почему она в каких-то случаях, наоборот, отсутствует. Понимание путей передачи энергии позволяет решать интересные практические задачи.
Так, одна из интересных особенностей материалов на основе лантаноидов заключается в том, что эффективность передачи энергии в них при определенных условиях может зависеть от температуры. Можно создать материалы, которые будут менять цвет люминесценции в зависимости от того, при какой температуре они находятся. Это так называемая люминесцентная термометрия.
Также мы создаем материалы, меняющие люминесцентный ответ в зависимости от каких-то внешних факторов среды — в частности, от наличия в ней определенных химических соединений. Это тоже результат исследований механизма передачи энергии, на этот раз – почему она в некоторых случаях происходит неэффективно.
Мы, например, недавно запатентовали сенсор, который позволяет определять примесь обычной воды в тяжелой воде, что интересно для ядерной промышленности. Это очень простой метод и позволяет почти «на глаз», с применением простейших приборов определять даже очень незначительные концентрации.
― Вы затронули тему органических светоизлучающих устройств. Расскажите, пожалуйста, подробнее о технологии органических светодиодов и о том, какое у нее будущее.
― В современном материаловедении это одна из горячих тем. Но история началась довольно давно. В 1950-е гг. Андре Бернаноз из университета Нанси обнаружил, что кристаллы люминесцентного красителя под действием высокого напряжения начинают светиться. Приблизительно через десять лет, в 1960-е гг., химики обнаружили, что кристаллы нафталина и антрацена тоже обладают люминесценцией под действием электрического тока. Тогда этот феномен мало кого заинтересовал, поскольку он проявляется при очень высоких напряжениях, порядка сотен вольт, и, соответственно, практического применения тогда почти не имел.
Взрывообразный рост интереса к органическим светодиодам возник в 1987 г., когда Чинг Ван Танг и Стивен Ван Слайк опубликовали первую статью об органических светодиодах на малых молекулах. Исследователи использовали комплекс алюминия, который работал при низких напряжениях. То есть их диод включался при напряжении порядка 4–5 В, что было уже совершенно приемлемо для практических применений. В 1997 г. появились первые коммерческие дисплеи, правда, монохромные, выпущенные фирмой «Пионер». Ну а дальше рост был скачкообразный, и в 2002 г. Samsung уже выпустил первый коммерческий дисплей.
В чем принцип работы органических светодиодов? Диод представляет собой достаточно простую структуру: два электрода, между которыми находится слой органического люминофора. Когда мы пропускаем ток через диод, на отрицательном электроде происходит выпуск или, как принято говорить, инжекция электронов. В этот момент на положительном электроде, то есть на аноде приходит как бы забор электронов обратно и образуются, как физики говорят, дырки — вакансии, которые несут положительный заряд. Дальше эти электронные дырки начинают дрейфовать внутрь структуры. И в какой-то момент положительные и отрицательные заряды встречаются. Это приводит к тому, что образуется так называемый экситон, то есть квазичастица, которая содержит в себе энергию. А она куда-то должна деться. Один из вариантов ― уйти в тепло, но, если вы правильно подобрали материал, то он начинает люминесцировать. Это явление называется электролюминесценцией.
В теории все очень просто: однослойное устройство, металлический катод, металлический анод. Но на самом деле все гораздо сложнее. Во-первых, мы говорим об очень тонких слоях материала. Органика, как правило, ― это диэлектрик. Поэтому, чтобы проявились электропроводящие свойства, помимо определенной структуры, нужно еще и использовать очень тонкие слои толщиной в десятки нанометров. Во-вторых, оказывается, что нужно сделать так, чтобы встреча электронных дырок происходила в том слое, который светится, а не где-то на одном из электродов. Поэтому реальный органический светодиод представляет собой «пирог» из нескольких десятков специально подобранных слоев. Вся эта конструкция должна быть очень хорошо экранирована от воздуха и влаги, поскольку те моментально разрушают структуру.
Основная проблема OLED-технологии заключается в том, что это тяжелая задача для материаловедения и органической химии. Создание материалов, технологий их напыления или нанесения другим способом, герметизация всей этой структуры, обеспечение рабочих условий... До сих пор не полностью решена проблема синего цвета. Чтобы обеспечить полноцветный дисплей, OLED-устройство должно состоять из трех компонентов ― красного, зеленого и синего. Синие работают хуже всего, поскольку это самое высокоэнергетическое излучение и оно приводит к быстрой деградации слоя, экран выцветает.
Ну и, конечно, есть проблема создания новых люминофоров, поскольку современные материалы ― это либо полимеры, недостаточно долговечные и не слишком технологически удобные, либо материалы на основе комплексов платины или иридия, которые крайне дороги. Сейчас происходит поиск новых материалов на основе серебра, меди, золота. В целом это очень широкая область исследований, куда вовлечены химики, занимающиеся органической химией, координационными элементоорганическими соединениями, полимерной химией. Фактически все химические специальности так или иначе вовлечены в процесс поиска новых материалов для OLED-устройств.
― Вы упоминали материалы на основе лантаноидов, которые при изменении температуры могут изменять и цвет своей люминесценции. Расскажите о них.
― Здесь нужно объяснить, что такое координационные соединения лантаноидов. Это очень интересный класс материалов. В них есть центральный неорганический ион, окруженный «шубой», оболочкой химически связанных молекул, называемых лигандами. Лиганды могут быть неорганическими, но в нашей лаборатории мы занимаемся синтезом и исследованием именно органических лигандов. Прелесть этих соединений в том, что мы можем увеличить коэффициент поглощения света в десятки тысяч раз по сравнению с самими лантаноидами.
Органическая часть молекулы будет передавать энергию в центральный ион, который и излучает свет. А процесс передачи этой энергии зависит, в том числе и от температуры. В нашей лаборатории совместно с учеными из Института элементоорганических соединений и с нашими коллегами из Франции и Португалии были исследованы новые материалы на основе тербия и европия. Это два наиболее ярко люминесцирующих иона лантаноидов. Физика люминесцентного процесса в них такова, что передача энергии между ионами европия и тербия сильно зависит от температуры. Когда мы меняем температуру окружающей среды, то либо возбуждаем только один ион тербия, либо энергия проскакивает через ион тербия и передается дальше на ион европия. А цвет свечения меняется с зеленого на красный, со всеми промежуточными цветами.
Если использовать такие методы, как запись и анализ спектров, то с помощью этого эффекта можно с точностью в доли градуса измерять температуру. Мы создали достаточно удачный термометр, работающий, правда, пока только при низких температурах, приблизительно при 100 К ― это температура жидкого азота. Но зато он обладает очень высокой чувствительностью. Преимущество подобных термометров заключается в том, что мы можем пользоваться им дистанционно — просто нанести слой на какую-то деталь и удаленно, светя лучом лазера или специальной лампы, регистрируя обратное излучение, мерить температуру в вакууме, в космосе. Материал, который нам удалось получить и протестировать, показывает одни из лучших характеристик в своем классе.
― Поделитесь с нами чем-то, чем бы вы, может быть, хотели похвастаться, важным и ценным результатом новой работы.
― Ну, мне кажется, похвастаться ― это не самая удачная формулировка для научной работы. Но тем не менее я думаю, что у нас есть несколько интересных результатов. Во-первых, мы уже несколько лет подряд в рамках проекта Российского научного фонда занимаемся исследованиями связи структуры органической части молекул с эффективностью люминесценции. Мы смогли исследовать несколько классов комплексов, показать, каким образом структура влияет на люминесцентные свойства. В определенных рамках мы можем направленно регулировать эти свойства и получать эффективные материалы. Мы понимаем, какая часть молекул за что отвечает, как они работают. Теперь нет необходимости перебирать бесконечное количество материалов.
Другая интересная работа ― в области органических красителей для электролюминесценции. Мы несколько лет взаимодействуем с Институтом органической химии и сейчас нашли некоторое количество любопытных красителей, имитирующих в светодиодах пламя свечи. Почему это важно? Существует проблема синего излучения в обычных лампах или экранах, которое вредно для сетчатки, вызывает ее деградацию и потенциально потерю зрения. Нам удалось найти красители, которые при достаточной яркости люминесцируют так, что в спектре практически нет синих компонентов. Это путь к созданию безопасных для глаз органических светодиодов.
Наконец, у нас есть успехи в области сенсорных материалов. Моими коллегами разработаны и протестированы материалы неорганических ионов, позволяющих эффективно определять небольшие концентрации цинка люминесцентным образом. Возможно, это будет некий наш вклад в лабораторную диагностику, в биомедицинскую химию.
Корреспондент Никита Ланской
Фотограф Елена Либрик
Оператор Дмитрий Самсонов
Источник - https://scientificrussia.ru
29.12.22 | 28.12.2022 Хайтек+. Вычислитель будущего: как устроен первый российский ионный квантовый процессор |
В 2020 году в России при поддержке РВК и Минцифры запустились программы Лидирующих исследовательских центров. В рамках одной из них Российский квантовый центр совместно с ФИАН им. П. Н. Лебедева, Сколковским институтом науки и технологий и ФТИАН им. К. А. Валиева приступил к проекту по созданию ионного квантового процессора с облачным доступом. О том, с какими сложностями столкнулась команда, как шла работа над проектом и что ждет область отечественных квантовых технологий, рассказал Алексей Федоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра.
Сегодня о разработке отечественных квантовых компьютеров говорят практически ежедневно. Область квантовых вычислений переживает колоссальный рост: крупнейшие вузы и научные центры регулярно делятся успехами по наращиванию вычислительной мощности квантовых устройств и повышению точности их операций. Если пять лет назад эта область традиционно воспринималась фундаментальной наукой, то сегодня мы все чаще говорим о прикладных применениях, пилотных проектах и трансфере научных разработок в технологические продукты. Предлагаю начать разбор с основ: что такое квантовые вычисления, на чем они построены и о каких платформах все постоянно говорят в связке с ними.
От простого к сложному
Как мы знаем, минимальная единица информации в классических вычислениях — это бит. И в каждый конкретный период времени бит может принимать значение 0 или 1. Все операции, что мы совершаем на наших ПК, будь то интернет-серфинг, майнинг криптовалюты, компьютерная игра или просмотр фильма — все это на самом деле последовательность нулей и единиц, так воспринимает информацию устройство.
Прототип ионного квантового процессора ФИАН-РКЦ.
Квантовые устройства оперируют квантовыми «аналогами» битов информации — кубитами, которые способны одновременно находиться сразу в двух состояниях: и в 0, и в 1. Эта способность достигается за счет явления квантовой суперпозиции. Именно суперпозиция и еще одно квантовое явление — квантовая запутанность — позволяют квантовым компьютерам решать определенные задачи экспоненциально быстрее. Примерами таких задач являются криптоаналитика, моделирование сложных систем, обработка больших данных (big data).
Квантовые компьютеры могут работать на разной физике: это привычные полупроводниковые технологии, а также сверхпроводники, атомы, ионы и фотонные системы. На данный момент еще не очевидно, какая из платформ станет лидером, поэтому ученые развивают процессоры на каждой. Возможно, что для разных классов задач специалисты будут использовать различные квантовые вычислительные устройства, и выбор в пользу той или иной платформы будет осуществляться исходя из ее сильных сторон.
Ионы во главе угла
Одной из наиболее перспективных систем считаются ионы в ловушках. Именно эта система была предложена в качестве одной их первых физических реализаций квантового компьютера, так называемой модели Сирака-Цоллера. Также с использованием ионов была показана первая двухкубитная операция: в эксперименте 1995 года участвовал будущий Нобелевский лауреат Дэвид Вайнленд и будущий сооснователь компании-единорога IonQ Кристофер Монро.
При использовании ионов информация может кодироваться в их внутренние электронные состояния. Упростим максимально, чтобы разобраться в сложной теме: так, если электрон иона находится на одной орбите — это 0, если он возбуждается и перескакивает на другую орбиту — это 1. Управлять состоянием иона можно с помощью лазеров. Благодаря тому, что ион обладает электрическим зарядом, его можно поймать и «подвесить» во внешнем электромагнитном поле — ионной ловушке. Ученые используют их, чтобы наращивать мощность квантовых компьютеров за счет увеличения числа частиц.
По ряду характеристик ионные кубиты считаются лидерами: время когерентности и качество операций в них значительно выше, чем в других платформах. Однако одним из вызовов является масштабируемость: так, если ионов в ловушке становится слишком много, они начинают «расталкивать» друг друга, и качество операций падает. На старте проекта Лидирующего исследовательского центра именно эта проблема стала ключевой.
От кубитов к кудитам
Результатом трехлетней работы ученых ФИАН и РКЦ стало создание прототипа ионного компьютера. В конце 2021 года была показана система из четырех кубитов, а в конце 2022 — прототип пятикубитного ионного квантового процессора.
Прототип квантового процессора состоит из большого количества подсистем. Условно всю работу можно разделить на несколько этапов:
- Ионы необходимо подготовить для кодирования информации. Для этого происходит многоступенчатый процесс охлаждения и их поимка в ловушку.
- Важно обеспечить возможность совершать индивидуальные операции с отдельными ионами. Здесь речь идет об однокубитных операциях.
- Для обмена квантовой информацией нужно организовать взаимодействие между ионами.
- Наконец, для получения результата необходимо считать состояние ионов.
Ключевой особенностью российского квантового процессора стало использование многоуровневых квантовых систем — кудитов. В отличие от кубитов, кудиты способны одновременно находиться в трех (кутриты), четырех (кукварты) и более состояниях сразу. В конце 2021 года российские физики построили систему из 2 куквартов, что полностью эквивалентно 4 кубитам. То есть вместо того, чтобы перепутывать 2 кубита со всеми сложностями этого процесса, можно взять один ион, в котором электрон может переходить не между двумя, а между четырьмя орбитами.
Как показали исследования, использование кудитов может улучшить масштабируемость и/или сократить сложность реализации квантовых операций за счет применения дополнительных уровней для хранения информации. Таким образом можно минимизировать количество межчастичных (двухкубитных) операций, качество которых обычно ниже, чем однокубитных.
Схема кодирования уровней ионного кудита
За последние несколько лет интерес к ионным кудитам резко вырос. В 2021–2022 годах в мире было продемонстрировано несколько кудитных процессоров: на основе ионов в России и в Австрии, два процессора на основе сверхпроводников в США (в том числе, компанией Rigetti), а также на основе фотонов Университетом Пекина. Можно смело сказать, что по такому оригинальному способу реализации квантовых процессоров Россия вошла в число пионеров.
Проблемы и их решения
Несмотря на то, что сегодня ресурсов квантового компьютера не хватает для решения осмысленных задач на уровне современных суперкомпьютеров, существующие платформы можно использовать для изучения квантовых алгоритмов и их устойчивости к ошибкам.
Совместная команда ученых из РКЦ и Сколтеха провела исследования по использованию ионного квантового процессора для реализации вариационных квантовых алгоритмов. Идея состоит в том, чтобы с помощью квантового процессора готовить определенные состояния, параметры которых итеративно меняются для оптимизации некоторого значения, например, энергии. Сегодня вариационные квантовые алгоритмы используются, например, в задачах квантовой химии. В ходе проекта ученым удалось доказать, что вариационная модель квантовых вычислений является универсальной.
Препятствием для решения полезных задач с помощью квантовых компьютеров является декогеренция, то есть процесс потери взаимодействия отдельных частиц в системе. Вспомним алгоритм работы квантовых вычислительных устройств. Необходимо приготовить регистр в определенных начальных квантовых состояниях, провести для них набор квантовых логических преобразований, а в конце произвести измерение. В ходе всех этих шагов — приготовления, манипуляций и измерений — могут возникать ошибки, поэтому реальное поведение квантовой системы может сильно отличаться от наших предположений.
Как в таком случае понять, какие именно состояния приготавливаются и какие именно квантовые преобразования выполняются? Здесь вперед выходит та сама задача характеризации квантовых состояний и процессов, то есть получения полной информации о них. Решением такой задачи в ходе проекта занималась группа во ФТИАН им. К. А. Валиева. В частности, команде удалось разработать методы квантовой томографии — полного восстановления квантовых состояний — для кудитов.
Пользоваться прямо сейчас
Несмотря на то, что квантовые компьютеры начинают продаваться как пользовательские устройства, гораздо более распространенный способ работы с ними — облачный доступ. Именно поэтому разработанный ионный квантовый процессор интегрирован в облачную платформу квантовых вычислений.
Пользовательский интерфейс облачной платформы квантовых вычислений
С использованием облачной платформы можно реализовать уже заготовленные квантовые алгоритмы: например, алгоритмы Гровера и Бернштейна-Визарани. Кроме того, можно создавать свои собственные квантовые алгоритмы и запускать их с помощью эмулятора квантовых вычислений или ионного квантового процессора. Программирование квантовых процессоров с помощью платформы уже было представлено в образовательных целях. Например, на Конгрессе молодых ученых в Сочи в рамках проекта «Урок цифры».
Созданная в ходе проекта ЛИЦ платформа квантовых вычислений не только показала быстрый прогресс в области ионных квантовых вычислений в России, но и заложила основу для будущего развития в этой области. Ионы остаются одной из лидирующих платформ в рамках Дорожной карты по квантовым вычислениям в России, а также продолжают приковывать интерес мирового научного сообщества. Естественный следующий шаг — масштабирование по количеству ионов с учетом возможности кудитного подхода, а также увеличение качества квантовых операций.
Как показывают исследования, на масштабе 50-70 кубитов, то есть 25-35 ионных куквартов, уже можно будет решать задачи на грани возможностей традиционных процессоров. Значит, по-настоящему полезное квантовое превосходство совсем близко.
29.12.22 | 28.12.2022 Пущинская среда. В Пущине состоится «Новогодняя лыжня» |
30 декабря на трассе ФИАН пройдут соревнования городского округа Пущино по лыжным гонкам. Приглашаются все желающие жители города от 11 лет и старше, независимо от уровня подготовки.
Дистанции – 1,5 км (девушки, юноши 11 лет), 2 км (девушки, юноши 12-13 лет), в остальных возрастных категориях дистанция на выбор 2 или 4 км.
Стиль хода свободный.
Начало 30 декабря в 17:00 на трассе ФИАН.
Заявки принимаются до 16:30 30 декабря 2022 на WhatsApp 8(916) 422-86-33, или по телефонам: 8(916) 422-86-34 – Алексей Анатольевич Шешелев, 8(916) 422-86-33 – Тамара Николаевна Шешелева.
Источник - https://inpushchino.ru/news/fizkultura-i-sport/v-puschine-sostoitsja-novogodnjaja-lyzhnja