СМИ о нас
07.10.22 | 07.10.2022 Полит.ру. Физики научились обесцвечивать искусственные алмазы |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет — а значит, и ювелирную ценность — алмазов, но также разработать метки для контроля за оборотом драгоценных камней. О работе рассказала пресс-служба Российского научного фонда.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П. Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М. В. Ломоносова и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН Сергей Кудряшов.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров? Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon
10.10.22 | 09.10.2022 Научная Россия. Перспективные пути отечественной физики. «В мире науки», № 7–8 |
Острая необходимость создавать отечественную высокотехнологичную продукцию ставит перед российскими физиками новые задачи. Это касается медицинской техники, микроэлектроники, космических разработок и квантовых технологий. Прикладные проекты, над которыми работают в Физическом институте им. П.Н. Лебедева РАН, могут в перспективе заполнить технические пустоты отечественной промышленности.
Каким проектам физики уделяют сегодня особое внимание? Что мешает запускать отечественные технологии в массовое производство? Стоит ли ждать в больницах российские аппараты МРТ? Могут ли квантовые компьютеры в будущем появиться в квартирах? Об этом — в интервью с директором ФИАН, членом-корреспондентом РАН Николаем Николаевичем Колачевским.
— Сложилась ситуация, в которой России как никогда нужны свои технологии и разработки. На какие проекты и направления в нынешних условиях делают особенный упор в ФИАН?
— Мы оказались в сложной, но интересной ситуации: производство отечественной наукоемкой продукции сейчас наиболее актуально. Не хотелось бы попасть в тот же капкан, что и в 2014 г., когда было четкое понимание, что необходимы собственные технологии, но в результате восстановления логистических цепочек актуальность этой задачи утихла. Сейчас нам нельзя оказаться в той ловушке: без собственных разработок уже не получится уверенно двигаться вперед.
Понятно, что мы не сможем заменить абсолютно всю продукцию отечественной: например, трехнанометровые технологии полупроводников, скорее всего, в ближайшее десятилетие будут нам недоступны. Но это не значит, что микроэлектронной промышленностью не стоит заниматься совсем. Это же касается и других направлений.
В ФИАН всегда около половины исследований ориентированы на прикладные разработки, но их внедрению часто препятствует так называемая долина смерти. Подобная ситуация складывается, когда академические институты, в частности ФИАН, доводят технологию до определенного уровня готовности, например четвертого по шкале Technology Readiness Level: это значит, что готов действующий образец, который мы можем продемонстрировать в работе. Но в итоге в серийное производство разработка не идет — этим должны заниматься другие люди: технологи, инженеры, менеджеры. Я говорю о том, что «сделать бургер» и «продать бургер» — две совершенно разные задачи.
ФИАН разрабатывает новые технологии в различных направлениях. В медицинской области это магнитно-резонансный томограф, комплекс протонной терапии и лазерные системы — то есть устройства для диагностики заболеваний, лечения раковых опухолей и заболеваний глаз.
Кроме того, мы занимаемся микроэлектроникой. Эта область сейчас особенно востребована, я считаю, что ее надо выводить в приоритет. Уже открываются новые лаборатории, и чем больше умов начнет думать в этом направлении, тем вероятнее получить какие-то нетривиальные решения.
ФИАН тоже подключен к этой работе — мы занимаемся созданием инфракрасных детекторов и различных сенсоров.
Необходимо внимательно относиться к собственным научным проектам, касающимся космоса. Это программа «ЭкзоМарс», космические обсерватории «Спектр-М» и «Спектр-УФ» — очень достойные проекты, которые надо развивать. Если споткнуться сейчас, то в ближайшие годы у нас будет серьезный дефицит научных космических миссий.
Список существующих задач можно продолжать и продолжать. Это высокотемпературная сверхпроводимость и новые материалы. Много говорят о квантовых технологиях: квантовые вычисления и квантовая сенсорика — это работа с базой знаний, которую заложили наши отцы-основатели академики Н.Г. Басов и А.М. Прохоров. Но мы уже не просто исследуем атомы, молекулы и делаем спектроскопию, а пытаемся использовать результаты для практических задач: элементарных вычислений или регистрации полей.
— Насколько плотно лаборатории различных направлений связаны и часто ли взаимодействуют?
— Конечно, многие разработки завязаны друг на друга. Есть инфраструктурные связующие проекты, такие как микроэлектроника. Сегодня практически в любой области науки и технологий нужны аналого-цифровые или цифро-аналоговые преобразователи, микроконтроллеры, мелкая электроника. Это можно сравнить с хлебом, который мы так или иначе регулярно употребляем.
Мы всячески поощряем взаимодействие отделов внутри института, и это приносит результаты. Кроме того, совместная работа важна для студентов. Когда человек начинает работать в нашем институте и по каким-то причинам хочет поменять область исследований, ему не нужно переходить в другую организацию — достаточно поменять лабораторию и научного руководителя. Такие ситуации встречаются часто и дают эффективные результаты. Надеюсь, что подобные связи будут укрепляться и дальше.
— На заседании президиума Российской академии наук в конце марта ФИАН заявил о своей разработке аппарата МРТ. Тогда же сотрудник вашего института рассказал, что эта разработка отличается в лучшую сторону от зарубежных аналогов. Расскажите подробнее, что это за аппарат?
— Это был крупный проект Министерства промышленности и торговли по разработке опытного образца МРТ, выполненный нами в кооперации с другими организациями. Мы сделали аппарат с полем в 1,5 Тесла — это золотой стандарт для медицинской диагностики. Аппарат МРТ прошел все медицинские испытания, о нем хорошо отзывались коллеги из Института неврологии.
А затем наступило затишье — то, о чем я говорил в начале интервью: сложилась ситуация, в которой проще закупить аппараты, чем налаживать производство. Теперь в государственно-имиджевом плане важно показать, что мы можем справиться с задачами, направленными на пользу обществу. Под эгидой «Росатома» и «Ростеха», с привлечением организаций РАН формируется крупный проект по производству отечественных магнитно-резонансных томографов.
ФИАН как научная организация может оказать научно-методическое и техническое сопровождение, помочь с программным обеспечением. В обществе востребованы стабильные аппараты МРТ с полем в 1,5 Тесла и хорошим разрешением, желательно достичь уровня аппаратов Siemens.
Второй этап — это развитие аппаратов. Например, возможность избавиться от жидкого гелия с помощью системы замкнутого цикла. На заседании президиума РАН в марте мы говорили именно о такой машине. С томографами, которые могут функционировать без заливки жидкого гелия, проще работать в регионах и полевых госпиталях, где могут быть проблемы с доставкой охлаждающего вещества. С другой стороны, гелия в России хватает и, я надеюсь, дефицита в ближайшее время не возникнет.
Еще одно важное направление — создание небольших мобильных аппаратов МРТ. У них может быть не такое высокое разрешение, как у стационарных устройств, но их можно использовать вне помещений, например установив на базу грузовика. Это важно во время техногенных катастроф или автомобильных аварий, когда необходимо понять, везти ли пострадавшего срочно в НИИ скорой помощи им. Н.В. Склифосовского или можно оказать помощь в местной больнице.
— Насколько мы сегодня близки к созданию таких аппаратов?
— Все, что я перечислил: и классические полуторатесловые аппараты, и безгелиевые, и мобильные установки, — уже создано в России в виде опытных образцов. Одна из машин стоит в ФИАН, ее можно запустить и сделать снимок.
Но сейчас стоит вопрос их тиражирования, для которого в том числе нужно решать вопросы кооперации и импортозамещения. Для производства аппаратов МРТ, работающих без гелия, нужна сложная охлаждающая система компрессоров замкнутого цикла. Это смесь вакуумной системы с системой высокого давления. Подобные устройства разрабатывают в Омске, но они предназначены для других задач, поэтому их мощности недостаточно для наших целей. То есть для тиражирования безгелиевых томографов нужно пройти еще довольно длинный путь, хотя контакт с коллегами уже налаживается.
При создании классических аппаратов МРТ с полем в 1,5 Тесла могут быть определенные сложности с электроникой. Магнитно-резонансный томограф регистрирует сигналы с помощью приемных катушек на частотах в сотни мегагерц. Необходимы микроконтроллеры и высокочастотные преобразователи — надо понимать, что мы не сможем сделать 100% необходимой электроники в стране, ее нужно закупать. И параллельно вести свои разработки.
— Какие задачи в области медицинской техники кроме создания аппаратов МРТ нужно сегодня решить?
— Сейчас в рамках крупного проекта Министерства науки и высшего образования РФ стоит задача по синхротронным исследованиям. Это протонная терапия онкологических опухолей.
Ускоритель разгоняет пучок протонов и направляет его в человеческое тело. В зависимости от энергии пучок останавливается на определенной глубине в теле, выжигая опухоль без хирургического вмешательства, причем в сложнодоступных участках организма: голове и шее. Это известная разработка, таким методом не первый год лечат пациентов в Медицинском радиологическом научном центре им. А.Ф. Цыба в Обнинске.
Наш институт развивает эту технологию. В частности, необходимо научиться лечить опухоли не только в голове и шее, но и во всем теле. Кроме того, есть множество нерешенных научно-медицинских задач: исследования реакции опухоли на воздействие протонов; взаимодействие альфа-частиц с человеческим телом и опухолями; увеличение эффективности лечения раковых опухолей с помощью одновременно применяемых методов терапии.
Это важная задача государственного масштаба, и одна из целей десятилетия науки и технологий — создание комплекса протонной терапии в Москве. Несмотря на большое население и несколько крупных онкологических центров, протонных установок в Москве нет, пациентам приходится ездить в Обнинск, Санкт-Петербург и Димитровград. Мы планируем установить комплекс на территории института, для этого уже освободили здание.
Мы рассчитываем, что в какой-то момент начнется тиражирование центров протонной и ионной терапии в стране, этот тренд ярко прослеживается в ведущих странах мира. Понятно, что это не уникальный метод терапии раковых опухолей, но именно сочетанное воздействие, например химиотерапия и протонный подход, часто дает очень хороший результат. Если 20 лет назад онкологический диагноз был чрезвычайно тяжелым для человека, то сегодня увеличить срок и качество жизни — вполне реальная задача. Медицина очень серьезно изменилась в этой области, и ФИАН тоже внес свой вклад.
— Другая популярная сегодня тема — это квантовые технологии и создание квантовых компьютеров. Объясните максимально просто, так, чтобы понял каждый человек, что такое квантовый компьютер и какие задачи он должен решать?
— Просто объяснить можно, но это будет достаточно примитивное определение. Дело в том, что у квантовых эффектов нет прямых механических аналогов. Мы живем в ньютоновском мире: шарики, пружинки, силы, ускорения... Объяснить квантовые процессы максимально просто — это значит объяснить их в терминах ньютоновской механики, что будет не совсем корректно.
В классических компьютерах мы подаем команды, которые за счет гигантской тактовой частоты, достигающей десятков гигагерц, последовательно обрабатываются: один-ноль-ноль, один-один-ноль, один-один-один и т.д. Квантовая система позволяет одновременно подать и обработать несколько таких команд — это то, что называется квантовой суперпозицией. Соответственно, на выходе получается в определенном смысле запутанный результат.
Это нужно для решения многих задач искусственного интеллекта и корреляции. Например, нам нужно найти в интернете изображение кота. В нейросети есть определенный образ кота, нет необходимости изучать изображение попиксельно, система соотносит определенную модель с другими изображениями, ищет связи и в результате выдает фотографию кота. За счет того, что квантовый компьютер может одновременно, а не последовательно обрабатывать данные, задача распознавания, поиска таких корреляций серьезно упрощается.
Если бы 20 лет назад, когда я был увлекающимся физиком и много времени проводил в лаборатории, мне сказали, что можно достаточно просто получать квантовую информацию с единичных атомов, я бы сильно удивился. По тем временам это была фантастика, мы с трудом могли взаимодействовать с облаком атомов, а сейчас их можно выстроить в цепочку. В МГУ выстраивают нейтральные атомы, у нас в лаборатории — ионы. С технологической точки зрения это очень большой прогресс.
— В ФИАН работает единственный в России ионный квантовый компьютер. Какие на нем сегодня проводятся исследования и эксперименты?
— В ионном квантовом компьютере, который стоит в нашей лаборатории, всего четыре кубита. Мы понимаем, что это немного. Квантовые компьютеры, сделанные за рубежом, полноценно работают на 15 кубитах.
Наша задача — до конца года сделать 16-кубитный ионный компьютер, и важно, чтобы он был подключен к облачной платформе. То есть внешние пользователи смогут подключиться к этой системе и выполнить на машине некоторые операции.
Современные классические компьютеры справляются с задачами быстрее, чем квантовые, в которых меньше 20 кубитов. При этом важно понимать, что мощность квантового компьютера экспоненциально растет с количеством кубитов: 21-кубитный компьютер в два раза мощнее, чем 20-кубитный. Поэтому на нашем четырехкубитном компьютере пока нельзя решить какие-то важные прикладные задачи, но уже можно продемонстрировать определенные преимущества квантового вычислителя перед классическим в решении некоторых своеобразных задач, связанных с поиском корреляции. Это исследовательская работа, и я думаю, что в течение десяти лет квантовые компьютеры будут востребованы для решения ряда специфических задач.
— Когда-то и классические компьютеры были уделом исключительно лабораторий и оборонных структур. Никто даже не задумывался, что компьютер будет стоять практически в каждой квартире. Возможно ли, что в будущем появятся персональные квантовые компьютеры?
— В 1970-х гг. шло развитие ламповых машин: как тогда мерялись количеством ламп в устройствах, так сегодня мы меряемся количеством кубитов. А революция произошла, когда, во-первых, был изобретен транзистор, во-вторых, мы перешли с магнитных лент на винчестеры. Размер домена, который требуется для записи бита информации, стал меньше микрометра, и это был существенный прогресс, активно подтолкнувший развитие технологий. Люди понимали, как должен функционировать компьютер, и алгоритмы, работавшие на ламповых машинах, продолжили работать и на транзисторах.
Но научный перелом привел к масштабированию технологии. Подобного перелома мы ждем и в области квантовых вычислений. Конечно, здесь нельзя ничего обещать, но это мировой тренд и очень интересные исследования.
— В России объявлено Десятилетие науки и технологий. Каких открытий в области физики стоит ждать за эти годы и чем уже занимаются в ФИАН?
— Начать надо с электроники — это очень актуальная тема.
Во-первых, это электроника в области сенсорики инфракрасного диапазона. Мы стремимся к тому, чтобы высокочувствительные детекторы спектральных инфракрасных диапазонов работали не только при азотных температурах. Это актуально для целого ряда задач — и гражданских, и оборонных. Второе важное и интересное направление — квантовые сенсоры: гравиметры, градиометры, гироскопы. Мы их совершенствуем: используем новые материалы, повышаем чувствительность и делаем компактнее. Направление, которое ФИАН развивал и продолжит развивать, — это часы на борту спутников ГЛОНАСС.
Развиваться будет и направление мощных лазеров. У нас есть объемный блок совместных с Научным центром физики и математики задач и по лазерному термоядерному синтезу, и по исследованию плазмы. Все-таки в этом году столетие Н.Г. Басова, и на фундаменте, который он заложил в основу лазерных технологий, продолжает строиться большая пирамида.
Отдельно развивается ветка миллиметровой радиоастрономии — исследование центра галактики и черных дыр. В этой области есть огромное количество прикладных аспектов: разработка детекторов миллиметрового диапазона, повышение частоты коммуникации, повышение частоты связи, регистрация паров воды.
В стране нужно создать ионный источник лечения онкологических заболеваний. Работу с протонами ФИАН прошел успешно, сейчас надо развивать технологии. Дело в том, что не все опухоли разрушаются протонами: несмотря на облучение частицами с очень высокими энергиями, некоторые опухоли остаются, но к ионам они более чувствительны. Думаю, что за десять лет мы справимся с этой задачей.
И, конечно, есть мечта о сверхпроводнике, работающем при комнатной температуре. Сейчас рекорд температуры составляет -20° С, но это происходит при давлении порядка миллиона атмосфер. Нам важно понять, можно ли уменьшить это давление: если мы сможем сделать сверхпроводник, способный работать при комнатной температуре, это будет очень существенный технологический прорыв. Может, это фантазии, а может, природа нам что-то подскажет в этом направлении.
Автор Александр Бурмистров
Оператор Александр Козлов
Фотограф Ольга Мерзлякова
https://scientificrussia.ru/articles/perspektivnye-puti-otecestvennoj-fiziki-v-mire-nauki-no-7-8
06.10.22 | 06.10.2022 Научная Россия. Физики обесцветили искусственный алмаз при помощи света |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления, — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН», исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Информация и фото предоставлены пресс-службой Российского научного фонда
Разместила Ирина Усик
https://scientificrussia.ru/articles/fiziki-obescvetili-iskusstvennyj-almaz-pri-pomosi-sveta
06.10.22 | 06.10.2022 РНФ. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов», — заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты — вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения», — пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были «выбиты» излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
Источник: ТАСС
https://rscf.ru/news/presidential-program/nauchilis-ochishchat-sinteticheskie-almazy-ot-defektov/
06.10.22 | 06.10.2022 RT Наука. Цвет алмазов |
Учёные из Физического института имени П.Н. Лебедева РАН, МГУ имени М.В. Ломоносова, ИТЭР-Центра и ООО «ВЕЛМАН» (Новосибирск) предложили способ, позволяющий изменить окраску искусственных алмазов. Об этом RT сообщили в пресс-службе РНФ.
Для эксперимента исследователи взяли алмазы красного цвета, лабораторно выращенные под действием высоких температур и давления. Специалисты облучали искусственные кристаллы лазером и смогли точечно обесцветить их за счёт влияния на структуру центров окраски.
Таким образом авторы смогли изменить оптические свойства алмазов.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем как изменить цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — отмечают учёные.
06.10.22 | 06.10.2022 ТАСС. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
"Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов", - заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты - вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
"Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления - так называемые HPHT-алмазы. Импульсы были очень короткими - всего триллионная доля секунды - и с ультрамалой энергией, но облучали кристалл с большой частотой повторения", - пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были "выбиты" излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
https://nauka.tass.ru/nauka/15972909
06.10.22 | 06.10.2022 Поиск. Учёные обесцветили искусственный алмаз при помощи света – Carbon |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микро-кодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН» исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Пресс-служба Российского научного фонда
05.10.22 | 04.10.2022 Научная Россия. Россия-1 о лауреатах Нобелевской премии по физике 2022 |
Россия-1 о лауреатах Нобелевской премии по физике 2022
Сегодня французскому ученому Алену Аспе, исследователю из Австрии Антону Цайлингеру и американскому ученому Джону Ф. Клаузеру была присуждена Нобелевская премия по физике «за эксперименты с запутанными фотонами, установление нарушения неравенств Белла и новаторство в квантовой информатике».
Решение Нобелевского комитета было основано на том, что работы ученых открыли путь от квантовой теории к квантовым технологиям. Уже сейчас начинают проводиться исследования по созданию квантовых компьютеров, сетей и квантового шифрования с использованием эффекта запутанных квантовых состояний, когда две разделенные частицы ведут себя как единое целое.
«Экспериментам, за которые сегодня была присуждена Нобелевская премия, уже много лет. В нашей лаборатории, например, запутывание квантовых частиц ― основная идея, на которой работает установка», ― прокомментировал награждение научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН Дмитрий Трегубов.
Фото: © Johan Jarnestad/The Royal Swedish Academy of Sciences
Корреспондент Никита Ланской
https://scientificrussia.ru/articles/rossia-1-o-laureatah-nobelevskoj-premii-po-fizike-2022
30.11.22 | 30.11.2022 Tekdeeps. Milky Way in neutrino light |
A neutrino is an elementary particle that practically does not interact with matter. This is its uniqueness: having been born as a result of nuclear processes, it can fly huge distances through outer space, even through stars and planets, without colliding with a single atom of matter. Neutrinos are one of the few cosmic “heralds” that can tell us, for example, about the processes occurring in the cores of galaxies covered with dense clouds of gas and dust. But that is why neutrinos are extremely difficult to detect.
To “hunt” for neutrinos, physicists build special neutrino telescopes – complex and bulky detectors capable of recording the passage of piece neutrinos per year. With the detection of neutrinos, too, not everything is simple – particles come in different energies and they need their own separate devices. Relatively recently, neutrino telescopes began to work, which managed to find high-energy neutrinos coming from deep space. American IceCube in Antarctica, the Russian Baikal Neutrino Telescope (also known as Project Baikal-GVD), European KM3NeT – three such neutrino detectors, the data of which are analyzed by physicists around the world. But they still have not seen the “home” neutrino radiation of our Galaxy against the general neutrino background. Although from the point of view of the theory, stars with huge magnetic fields, like incoming cosmic rays, are able to give birth to neutrinos.
In a recent article in The Astrophysical Journal Letters a group of physicists from the Institute for Nuclear Research of the Russian Academy of Sciences, the Physical Institute of the Russian Academy of Sciences, the Moscow Institute of Physics and Technology and the Institute of Radio Astronomy of the Max Planck Society (Germany) write that they managed to detect precisely the galactic neutrino radiation. To do this, the researchers collected 70 cases of registration of high-energy neutrinos on the detector. IceCube for a total of ten years of observation. It turned out that neutrinos do indeed concentrate towards the galactic plane, but not in a narrow band – the width of the neutrino Milky Way turned out to be like two lengths of the Big Dipper bucket. Perhaps this indicates that a significant part of the neutrino is born not just in our Galaxy, but in its nearest region. This is yet to be dealt with.
As a corresponding member of the Russian Academy of Sciences notes Yuri Kovalev (FIAN AND MIPT): “New, more advanced neutrino experiments in the Northern Hemisphere – Baikal-GVD and KM3NeT – will soon make it possible to conduct a similar analysis with their data and study the area of \u200b\u200bthe galactic center in more detail. Neutrino telescopes register elementary particles “from under their feet”, and there is the center of the Galaxy for us northerners. In the meantime, focusing on the IceCube and Baikal-GVD data, we can say with confidence that the neutrino sky is not so simple – a large contribution to the astrophysical neutrino flux is made by sources of completely different classes, both galactic and extragalactic”.
According to the press service of the Moscow Institute of Physics and Technology.
30.11.22 | 30.11.2022 За науку. Ученые обнаружили нейтринное излучение Млечного Пути |
Астрофизики проанализировали общедоступные данные нейтринной обсерватории IceCube, расположенной в Антарктиде. Оказалось, что значительная часть потока высокоэнергетических нейтрино, регистрируемых телескопом, имеет галактическое происхождение, то есть рождена в Млечном Пути. Статья вышла в ведущем международном журнале Astrophysical Journal Letters.
Млечный Путь, проекция нашей спиралевидной Галактики, вдохновляет ученых всего мира и не только их. Выйдешь ночью — красота. Виден Млечный Путь — миллиарды звезд. Наш большой дом. Во Вселенной галактик много, но мы внутри этой, поэтому ее свет доминирует над другими.
Но «светится» Млечный Путь не только в видимом глазу спектре. При переходе к более высоким энергиям излучения, нежели может увидеть наш глаз, становятся важными и внегалактические источники: хотя и далекие, но более мощные. Но даже в гамма-излучении Млечный Путь доминирует на небе. Вдобавок к излучению отдельных объектов, дают вклад и взаимодействия космических лучей высоких энергий с межзвездным газом.
Российских физиков из Института ядерных исследований РАН (ИЯИ РАН), Физического института РАН (ФИАН), Московского физико-технического института (МФТИ) и института радиоастрономии общества Макса Планка (MPIfR, Германия) привлекло нейтринное излучение Млечного Пути. Нейтрино — это уникальная элементарная частица, которая без препятствий проходит через материю, практически не взаимодействуя с ней. Сравнительно недавно начали работать нейтринные телескопы, которым удалось найти нейтрино высоких энергий, приходящие из космоса. Американский IceCube, наш российский Байкальский нейтринный телескоп (известный также как проект Baikal-GVD), европейский KM3NeT — вот три нейтринных телескопа, данные которых анализируют физики всего мира. Но они до сих пор не видели излучения нашей родной, такой домашней Галактики. Хотя много теоретиков твердили год от года: звезды с огромными магнитными полями, как и прилетающие космические лучи, в состоянии родить нейтрино. Загадка!
Член-корреспондент РАН Сергей Троицкий из ИЯИ рассказывает: «Не так давно установка “Ковер-2” (расположенная в Баксанской нейтринной обсерватории ИЯИ РАН) обнаружила вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Может быть просто совпадением».
В своей новой статье группа ученых пишет, что им удалось обнаружить галактическое излучение нейтрино.
Кандидат наук Александр Плавин из ФИАН описывает методику анализа: «Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений? Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности — 99,996%, достаточно редко встречающийся в нейтринной астрофизике, где много неопределенностей и пока все еще мало качественных данных».
Это фундаментальное открытие, с одной стороны, было давно ожидаемым, а с другой — принесло новые вопросы. Нейтрино, хотя и концентрируются к галактической плоскости, но не в узкой полосе: ширина нейтринного Млечного Пути оказалась как две длины ковша Большой Медведицы. Возможно, это указывает на то, что значительная часть нейтрино рождается не просто в нашей Галактике, а в ближайшей ее области. С этим еще предстоит разбираться.
Член-корреспондент РАН Юрий Ковалев (ФИАН И МФТИ) заключает: «Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT — в скором времени дадут возможность провести аналогичный анализ с их данными и более подробно изучить область галактического центра. Нейтринные телескопы регистрируют элементарные частицы “из-под своих ног”, там и находится центр Галактики для нас, северян. А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью можем говорить, что нейтринное небо не такое простое — большой вклад в поток астрофизических нейтрино вносят источники совершенно разных классов, как галактические, так и внегалактические».
Работа поддержана крупным научным проектом Минобрнауки.
https://zanauku.mipt.ru/2022/11/30/uchenye-obnaruzhili-nejtrinnoe-izluchenie-mlechnogo-puti/