СМИ о нас

29.09.23 29.09.2023 Наука.рф. ЦКП «Прометеус» поможет бороться с социально-значимыми заболеваниями

В Физическом институте им. П. Н. Лебедева РАН (ФИАН) создали Центр коллективного пользования (ЦКП) «Прометеус». Здесь ученые смогут проводить новые фундаментальные и прикладные исследования в разных направлениях: от космической биологии и радиационной безопасности, до диагностики и лучевой терапии онкологических заболеваний.

Как сообщили в пресс-службе ФИАН, чтобы воспользоваться центром, ученым достаточно оставить заявки на сайте и согласовать планы работ — после этого они могут приступать к исследованиям. Доступность этого уникального оборудования будет стимулировать развитие технологий в области ядерной и радиационной физики — в том числе позволит найти новые методы борьбы с социально-значимыми заболеваниями.

«Наш центр открывает доступ ученым и исследователям различных областей наук к уникальному протонному излучению, интерес к которому продолжает расти. Широкий диапазон рабочих энергий и простота эксплуатации позволяют в короткие сроки проводить планирование и высокоточное облучение интересующих объектов. Мы убеждены, что в результате совместных работ станет возможным более динамичное развитие методик протонной терапии, а работа ЦКП окажет вклад в развитие научного потенциала отечественной науки», — рассказал руководитель ЦКП Александр Евгеньевич Шемяков.

В «Прометеусе» уже полностью проведены работы по пяти заявкам исследователей. Одними из первых его пользователей стали ученые из Института ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). С помощью техники центра они ищут способы эффективного проведения бор-протонозахватной терапии — это перспективная методика лечения злокачественных опухолей.

«Новый центр обеспечит Московский регион и страну современной исследовательской инфраструктурой, позволяющей проводить исследования нового уровня. Он также будет стимулировать развитие новейших технологий в области ядерной и радиационной физики», — отметила научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Завестовская.

Центр коллективного пользования «Прометеус» создан в рамках Федеральной научно-технической программы развития синхротронных и нейтронных исследований и исследовательской инфраструктуры. Всего в организациях, подведомственных Минобрнауки России, сегодня работают более 500 центров коллективного пользования. Из них около 300 созданы в научных организациях и более 200 — в вузах.

https://наука.рф/news/tskp-prometeus-pomozhet-borotsya-s-sotsialno-znachimymi-zabolevaniyami/

29.09.23 29.09.2023 Российская академия наук. Центр коллективного пользования «Прометеус» для диагностики и терапии онкологических заболеваний

В Физическом институте им. П.Н. Лебедева РАН (ФИАН) на базе комплекса протонной терапии «Прометеус» создан Центр коллективного пользования (ЦКП КПТ «Прометеус»). ЦКП образован в рамках реализации проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов» при поддержке ФНТП «Развитие синхротронных и нейтронных исследований и исследовательской инфраструктуры».

Всего в организациях, подведомственных Минобрнауки России, сегодня функционирует более 500 ЦКП, из них около 300 в научных организациях и более 200 в высших учебных заведениях.

ЦКП КПТ «Прометеус» ФИАН позволяет проводить фундаментальные и прикладные исследования в области радиационной биофизики, радиобиологии, ядерной медицины, радиационной безопасности, диагностики и лучевой терапии онкологических заболеваний, протонной томографии, в области ядерной и радиационной физики, дозиметрии, радиационной стойкости материалов, космической биологии.

Комплекс протонной терапии «Прометеус»
Комплекс протонной терапии «Прометеус»

«Наш Центр открывает доступ ученым и исследователям различных областей наук к уникальному протонному излучению, интерес к которому продолжает расти. Широкий диапазон рабочих энергий и простота эксплуатации позволяют в короткие сроки проводить планирование и высокоточное облучение интересующих объектов. Мы убеждены, что в результате совместных работ станет возможным более динамичное развитие методик протонной терапии, а работа ЦКП окажет вклад в развитие научного потенциала отечественной науки, — рассказал руководитель ЦКП Александр Евгеньевич Шемяков. — Чтобы воспользоваться возможностями нашего Центра, нужно оставить заявку на сайте, согласовать план работ и приступать к исследованиям».

Создание Центра повышает доступность уникального оборудования для институтов РАН, отраслевых НИИ и ВУЗов Российской Федерации, а также международных и зарубежных научных организаций. Это вносит вклад в развитие фундаментальной и прикладной науки, а также позволяет совершенствовать технологию протонной лучевой терапии для более успешной борьбы с онкологическими заболеваниями.

Система иммобилизации пациента
Система иммобилизации пациента

«Новый Центр обеспечит Московский регион и страну, современной исследовательской инфраструктурой, позволяющей проводить исследования нового уровня. Он также будет стимулировать развитие новейших технологий в области ядерной и радиационной физики», — отметила научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская.

На данный момент, в ЦКП КПТ «Прометеус» были полностью проведены работы по пяти заявкам. Одними из первых пользователей Центра коллективного пользования на базе КПТ «Прометеус» стали учёные из Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). Научной группой были проведены совместные работы с использованием разработанного в ИЯФ СО РАН малогабаритного детектора нейтронов с парой литьевых полистирольных сцинтилляторов, один из которых обогащен бором. Учёные измерили плотность потока нейтронов для оценки возможности реализации бор-протонозахватной терапии и сечение реакции 11B(p,a)aa до энергии протонов 200 МэВ. Проведенные эксперименты показали хорошие результаты, поэтому коллектив ИЯФ СО РАН принял решение продолжить работы по данной тематике и повторно обратиться в Центр коллективного пользования на базе КПТ «Прометеус».

https://new.ras.ru/activities/news/tsentr-kollektivnogo-polzovaniya-prometeus-dlya-diagnostiki-i-terapii-onkologicheskikh-zabolevaniy/

 

29.09.23 29.09.2023 Аргументы недели. В России создан центр коллективного пользования «Прометеус»

В Физическом институте им. П.Н. Лебедева РАН был создан Центр коллективного пользования на базе комплекса протонной терапии «Прометеус». ЦКП был образован в рамках проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов».

ЦКП КПТ «Прометеус» ФИАН предоставляет возможность проведения фундаментальных и прикладных исследований в различных областях, таких как радиационная биофизика, радиобиология, ядерная медицина, радиационная безопасность, диагностика и лучевая терапия онкологических заболеваний, протонная томография, ядерная и радиационная физика, дозиметрия, радиационная стойкость материалов и космическая биология.

Создание Центра способствует повышению доступности уникального оборудования для институтов РАН, отраслевых научно-исследовательских институтов и вузов Российской Федерации, а также для международных и зарубежных научных организаций. Это важный вклад в развитие фундаментальной и прикладной науки, а также позволяет улучшить технологию протонной лучевой терапии для более эффективной борьбы с онкологическими заболеваниями.

Научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская отметила: «Новый Центр обеспечит Московский регион и всю страну современной исследовательской инфраструктурой, которая позволит проводить исследования нового уровня. Он также будет способствовать развитию новейших технологий в области ядерной и радиационной физики».

https://argumenti.ru/science/2023/09/858687

29.09.23 29.09.2023 Russia24.pro. В России создан центр коллективного пользования «Прометеус»

В Физическом институте им. П.Н. Лебедева РАН был создан Центр коллективного пользования на базе комплекса протонной терапии «Прометеус». ЦКП был образован в рамках проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов».

ЦКП КПТ «Прометеус» ФИАН предоставляет возможность проведения фундаментальных и прикладных исследований в различных областях, таких как радиационная биофизика, радиобиология, ядерная медицина, радиационная безопасность, диагностика и лучевая терапия онкологических заболеваний, протонная томография, ядерная и радиационная физика, дозиметрия, радиационная стойкость материалов и космическая биология.

Создание Центра способствует повышению доступности уникального оборудования для институтов РАН, отраслевых научно-исследовательских институтов и вузов Российской Федерации, а также для международных и зарубежных научных организаций. Это важный вклад в развитие фундаментальной и прикладной науки, а также позволяет улучшить технологию протонной лучевой терапии для более эффективной борьбы с онкологическими заболеваниями.

Научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская отметила: «Новый Центр обеспечит Московский регион и всю страну современной исследовательской инфраструктурой, которая позволит проводить исследования нового уровня. Он также будет способствовать развитию новейших технологий в области ядерной и радиационной физики».

https://russia24.pro/361015634/

29.09.23 29.09.2023 Атомная Энергия 2.0. В Физическом институте им. П.Н. Лебедева РАН создан Центр коллективного пользования «Прометеус»

В Физическом институте им. П.Н. Лебедева РАН (ФИАН) на базе комплекса протонной терапии «Прометеус» создан Центр коллективного пользования (ЦКП КПТ «Прометеус»). ЦКП образован в рамках реализации проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов» при поддержке ФНТП «Развитие синхротронных и нейтронных исследований и исследовательской инфраструктуры». Всего в организациях, подведомственных Минобрнауки России, сегодня функционирует более 500 ЦКП, из них около 300 в научных организациях и более 200 в высших учебных заведениях.

ЦКП КПТ «Прометеус» ФИАН позволяет проводить фундаментальные и прикладные исследования в области радиационной биофизики, радиобиологии, ядерной медицины, радиационной безопасности, диагностики и лучевой терапии онкологических заболеваний, протонной томографии, в области ядерной и радиационной физики, дозиметрии, радиационной стойкости материалов, космической биологии.

«Наш Центр открывает доступ ученым и исследователям различных областей наук к уникальному протонному излучению, интерес к которому продолжает расти. Широкий диапазон рабочих энергий и простота эксплуатации позволяют в короткие сроки проводить планирование и высокоточное облучение интересующих объектов. Мы убеждены, что в результате совместных работ станет возможным более динамичное развитие методик протонной терапии, а работа ЦКП окажет вклад в развитие научного потенциала отечественной науки», - рассказал руководитель ЦКП Александр Евгеньевич Шемяков. – «Чтобы воспользоваться возможностями нашего Центра, нужно оставить заявку на сайте, согласовать план работ и приступать к исследованиям».

Создание Центра повышает доступность уникального оборудования для институтов РАН, отраслевых НИИ и ВУЗов Российской Федерации, а также международных и зарубежных научных организаций. Это вносит вклад в развитие фундаментальной и прикладной науки, а также позволяет совершенствовать технологию протонной лучевой терапии для более успешной борьбы с онкологическими заболеваниями.

«Новый Центр обеспечит Московский регион и страну, современной исследовательской инфраструктурой, позволяющей проводить исследования нового уровня. Он также будет стимулировать развитие новейших технологий в области ядерной и радиационной физики», - отметила научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская

На данный момент, в ЦКП КПТ «Прометеус» были полностью проведены работы по 5 заявкам. Одними из первых пользователей Центра коллективного пользования на базе КПТ «Прометеус» стали ученые из Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). Научной группой были проведены совместные работы с использованием разработанного в ИЯФ СО РАН малогабаритного детектора нейтронов с парой литьевых полистирольных сцинтилляторов, один из которых обогащен бором. Ученые измерили плотность потока нейтронов для оценки возможности реализации бор-протонозахватной терапии и сечение реакции 11B(p,a)aa до энергии протонов 200 МэВ. Проведенные эксперименты показали хорошие результаты, поэтому коллектив ИЯФ СО РАН принял решение продолжить работы по данной тематике и повторно обратиться в Центр коллективного пользования на базе КПТ «Прометеус»

https://www.atomic-energy.ru/news/2023/09/29/139196

29.09.23 29.09.2023 Научная Россия. На базе ФИАН создан Центр коллективного пользования «Прометеус»

В Физическом институте им. П.Н. Лебедева РАН (ФИАН) на базе комплекса протонной терапии «Прометеус» создан Центр коллективного пользования (ЦКП КПТ «Прометеус»). ЦКП образован в рамках реализации проекта «Разработка новых технологий диагностики и лучевой терапии социально значимых заболеваний протонными и ионными пучками с использованием бинарных ядерно-физических методов» при поддержке ФНТП «Развитие синхротронных и нейтронных исследований и исследовательской инфраструктуры». Всего в организациях, подведомственных Минобрнауки России, сегодня функционирует более 500 ЦКП, из них около 300 в научных организациях и более 200 в высших учебных заведениях.

ЦКП КПТ «Прометеус» ФИАН позволяет проводить фундаментальные и прикладные исследования в области радиационной биофизики, радиобиологии, ядерной медицины, радиационной безопасности, диагностики и лучевой терапии онкологических заболеваний, протонной томографии, в области ядерной и радиационной физики, дозиметрии, радиационной стойкости материалов, космической биологии.

«Наш Центр открывает доступ ученым и исследователям различных областей наук к уникальному протонному излучению, интерес к которому продолжает расти. Широкий диапазон рабочих энергий и простота эксплуатации позволяют в короткие сроки проводить планирование и высокоточное облучение интересующих объектов. Мы убеждены, что в результате совместных работ станет возможным более динамичное развитие методик протонной терапии, а работа ЦКП внесет вклад в развитие научного потенциала отечественной науки, – рассказал руководитель ЦКП Александр Евгеньевич Шемяков. – Чтобы воспользоваться возможностями нашего Центра, нужно оставить заявку на сайте, согласовать план работ и приступать к исследованиям».

Создание Центра повышает доступность уникального оборудования для институтов РАН, отраслевых НИИ и вузов Российской Федерации, а также международных и зарубежных научных организаций. Это вносит вклад в развитие фундаментальной и прикладной науки, а также позволяет совершенствовать технологию протонной лучевой терапии для более успешной борьбы с онкологическими заболеваниями.

«Новый Центр обеспечит Московский регион и страну современной исследовательской инфраструктурой, позволяющей проводить исследования нового уровня. Он также будет стимулировать развитие новейших технологий в области ядерной и радиационной физики», – отметила научный руководитель проекта, руководитель Лаборатории радиационной биофизики и биомедицинских технологий ФИАН Ирина Николаевна Завестовская.

На данный момент в ЦКП КПТ «Прометеус» были полностью проведены работы по 5 заявкам. Одними из первых пользователей Центра коллективного пользования на базе КПТ «Прометеус» стали ученые из Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). Научной группой были проведены совместные работы с использованием разработанного в ИЯФ СО РАН малогабаритного детектора нейтронов с парой литьевых полистирольных сцинтилляторов, один из которых обогащен бором. Ученые измерили плотность потока нейтронов для оценки возможности реализации бор-протонозахватной терапии и сечение реакции 11B(p,a)aa до энергии протонов 200 МэВ. Проведенные эксперименты показали хорошие результаты, поэтому коллектив ИЯФ СО РАН принял решение продолжить работы по данной тематике и повторно обратиться в Центр коллективного пользования на базе КПТ «Прометеус».


Комплекс протонной терапии «Прометеус»

https://scientificrussia.ru/articles/na-baze-fian-sozdan-centr-kollektivnogo-polzovania-prometeus

27.09.23 27.09.2023 Глобальная энергия. Российские ученые повысили эффективность светодиодов с помощью фтора

Эффективность свечения металлорганических комплексов, используемых в органических светодиодах, можно повысить с помощью фтора. Такой вывод сделали ученые из Физического института имени П.Н. Лебедева РАН и Института спектроскопии РАН по итогам экспериментов, которые показали, что соединения с тринадцатью атомами фтора в два раза эффективнее преобразуют подаваемую на них энергию в свет, чем соединения с двумя атомами фтора. Это наблюдение позволит создать экономичные и эффективные светодиоды для бытовой техники и наноизлучателей. Результаты исследования опубликованы в журнале Dyes and Pigments.

Российские ученые повысили эффективность светодиодов с помощью фтора
Источник фото — rscf.ru

Органические или OLED-светодиоды широко используются в технике. Например, дисплеи на их основе применяются в смартфонах, телевизорах и цифровых фотоаппаратах. Излучение OLED обусловлено органическими соединениями или комплексами с металлами, которые при действии электрического тока или внешнего света начинают люминесцировать, т.е. самостоятельно светиться в определенном диапазоне. Наиболее перспективными светоизлучающими материалами для OLED-светодиодов являются соединения ионов металлов с β-дикетонами — кислородсодержащими органическими молекулами. Они удобны тем, что цвет и интенсивность их свечения можно менять на этапе синтеза. Однако такие комплексы имеют довольно низкую эффективность люминесценции: лишь небольшая часть поступающей на них энергии преобразуется в излучение, тогда как большая часть – рассеивается в виде тепла.

Более ранние исследования показали, что исправить эту проблему можно за счет введение в состав молекулы атомов фтора. Основываясь на этом выводе, ученые из Физического института имени П. Н. Лебедева РАН и Института спектроскопии РАН синтезировали полифторированные комплексы β-дикетонов с ионом европия — металла из группы лантаноидов (химических элементов, которые применяются в медицине при изготовлении противовоспалительных средств). Соединения различались количеством атомов фтора: в каждой из трех органических молекул-лигандов, окружающих центральный ион европия, их было три, четыре, семь или тринадцать.

Чтобы оценить влияние атомов фтора на люминесценцию комплексов, авторы исследования освещали растворы соединений очень короткими импульсами лазерного излучения, а также измеряли эффективность излучения и в молекулах комплексов. В результате выяснилось, что увеличение числа атомов фтора в молекуле приводит к значительному росту эффективности свечения. Например, комплексы, содержащие тринадцать атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами фтора. Ученым тем самым удалось повысить квантовый выход люминесценции до 56%, что сопоставимо с лучшими представителями этого класса материалов.

«Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, значительная потребность в которых существует в современной быстро развивающейся технике. В дальнейшем мы планируем расширить область исследования фторсодержащих комплексных соединений на другие ионы лантаноидов, чтобы научиться направленно создавать эффективные люминесцентные материалы с заданными свойствами», – цитирует Российский научный фонд одного из авторов исследования, доктора химических наук Илью Тайдакова.

https://globalenergyprize.org/ru/2023/10/05/rossijskie-uchenye-povysili-jeffektivnost-svetodiodov-s-pomoshhju-ftora/

27.09.23 27.09.2023 Время электроники. В ФИ РАН удвоили КПД свечения молекул для органических светодиодов

Исследователи заменили молекулы водорода в соединениях, лежащих в основе диодов, на большое число молекул фтора, что позволило значительно повысить эффективность люминесценции.

Российские ученые обнаружили, что эффективность свечения молекул на базе соединений европия, пригодных для создания органических светодиодов (OLED), можно удвоить, если внедрить в их состав большое количество атомов фтора. Об этом сообщила пресс-служба Российского научного фонда (РНФ). Исследование опубликовано в журнале Dyes and Pigments.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, потребность в которых существует в современной быстро развивающейся технике», — пояснил ведущий научный сотрудник Физического института РАН (Москва) Илья Тайдаков, чьи слова приводит пресс-служба РНФ.

Тайдаков и его коллеги изучали физические свойства соединений бета-дикетонов, кислородосодержащих органических молекул, и редкоземельного металла европия. Как и другие типы материалов, применяемых при создании органических светодиодов, эти вещества отличаются относительно низким КПД — эффективностью действия относительно энергозатрат.

Низкая эффективность работы этих излучателей, как объясняют российские физики, связана с наличием множества высокоэнергетических связей между атомами углерода и водорода в их молекулах. Исследователи решили выяснить, как замена разного числа атомов водорода на фтор в молекулах бета-дикетонов и других органических соединений, окружающих ионы европия, повлияла на эффективность их свечения.

В общей сложности ученые изучили свойства шести вариаций соединений европия с органикой, и обнаружили, что молекулы, содержащие 13 атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами этого элемента. По уровню КПД они не уступали лучшим представителям этого класса материалов.

Как отмечается в сообщении, разработанные соединения могут успешно применяться в качестве источников красного света для электролюминесцентных устройств. Кроме того, физики предполагают, что схожими свойствами должны обладать другие соединения органики и редкоземельных металлов, что открывает дорогу для создания целого класса высокоэффективных органических светодиодов.

Первые органические светодиоды были созданы еще в конце 1980-х годов, однако они начали массово использоваться в технике и промышленности лишь на рубеже веков. Сейчас их прменяют как для создания осветительных приборов, так и компонентов электронных гаджетов, в частности дисплеев. OLED-устройства отличаются высокой контрастностью, небольшими габаритами и гибкостью. Более широкому использованию пока мешает недолговечность органических светодиодов, а также относительно низкий КПД.

https://russianelectronics.ru/2023-09-27-phyran/

27.09.23 27.09.2023 Хабр. Физики из России удвоили КПД свечения молекул для органических светодиодов

Российские учёные обнаружили, что эффективность свечения молекул на базе соединений европия, пригодных для создания органических светодиодов (OLED), можно удвоить, если внедрить в их состав большое количество атомов фтора. Результаты исследования, поддержанного Российским научным фондом (РНФ), опубликованы в журнале Dyes and Pigments.

Люминесценция новых комплексов в растворе. Источник: Илья Тайдаков.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, потребность в которых существует в современной быстро развивающейся технике», — пояснил ведущий научный сотрудник Физического института РАН (Москва) Илья Тайдаков.

Илья Тайдаков и его коллеги изучали физические свойства соединений бета-дикетонов, кислородосодержащих органических молекул, и редкоземельного металла европия. Как и другие типы материалов, применяемых при создании органических светодиодов, эти вещества отличаются относительно низким КПД — эффективностью действия относительно энергозатрат.

Низкая эффективность работы этих излучателей, как объясняют российские физики, связана с наличием множества высокоэнергетических связей между атомами углерода и водорода в их молекулах. Исследователи решили выяснить, как замена разного числа атомов водорода на фтор в молекулах бета-дикетонов и других органических соединений, окружающих ионы европия, повлияла на эффективность их свечения.

В общей сложности учёные изучили свойства шести вариаций соединений европия с органикой и обнаружили, что молекулы, содержащие 13 атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами этого элемента. По уровню КПД они не уступали лучшим представителям этого класса материалов.

Как отмечается в сообщении, разработанные соединения могут успешно применяться в качестве источников красного света для электролюминесцентных устройств. Кроме того, физики предполагают, что схожими свойствами должны обладать другие соединения органики и редкоземельных металлов, что открывает дорогу для создания целого класса высокоэффективных органических светодиодов.

Первые органические светодиоды были созданы ещё в конце 1980-х годов, однако они начали массово использоваться в технике и промышленности лишь на рубеже веков. Сейчас их применяют как для создания осветительных приборов, так и компонентов электронных гаджетов, в частности дисплеев. OLED-устройства отличаются высокой контрастностью, небольшими габаритами и гибкостью. Более широкому использованию пока мешает недолговечность органических светодиодов, а также относительно низкий КПД.

https://habr.com/ru/news/763650/

26.09.23 26.09.2023 Аргументы и факты. Открыть триллион дверей. Создатель квантового компьютера обучает нейросети

В «Сколково» будут построены корпуса Московского квантового кластера. Об этом у себя в соцсетях написал мэр Москвы Сергей Собянин. По его словам, в кластере будет 27 лабораторий и 15 научных групп Российского квантового центра. Кроме того, квантовый кластер станет площадкой для развития некрупных высокотехнологичных производств и стартапов.

В проект будет влито почти 6,5 млрд рублей инвестиций. А построить и запустить кластер предполагается уже в четвертом квартале 2024 года. Его появление станет еще одним доказательством того, что Россия с Москвой в авангарде — одна из мировых держав, активно развивающая квантовые технологии. Правительство России до 2024 года выделило на квантовые исследования 24 млрд рублей. До 2026 года предусмотрены средства в размере 41 млрд рублей от государства и частных инвесторов.


Фото: АиФ/ Александр Вдовенко

Создать лекарства, построить самолет

К слову, не так давно в столице прошло грандиозное событие — первый Форум будущих технологий. Это была своего рода презентация новой площадки, на которой ежегодно будут встречаться и обмениваться опытом сотни российских и зарубежных участников. Так вот на этом форуме широкой публике продемонстрировали квантовый ионный компьютер* — первый в стране. Разработку оценил президент Владимир Путин.

Aif.ru поговорил с создателем чудо-машины — научным сотрудником лаборатории «Оптика сложных квантовых систем» Физического института им. П.Н. Лебедева РАН Ильей Семериковым.

Ольга Кортосова, aif.ru: — Илья, приходя после очередного рабочего дня домой, вы делитесь с семьей новостями?

Илья Семериков: — Дома меня встречают супруга и пятилетний сынишка. Я рассказываю о том, что получилось, что не получилось. Стараюсь подметить интересную особенность прошедшего дня, какое-то свое небольшое открытие.

Фото: АиФ/ Александр Вдовенко

— Домашние задают вопросы о квантовых технологиях?

— Жена довольно хорошо разбирается в специфике моей работы, интересуется деталями, радуется или огорчается вместе со мной. Я подолгу засиживаюсь на работе, поэтому каждая минута с близкими очень ценна. С сыном мы вместе читаем книжки, осваиваем домашний компьютер и нейросети.

— А чем квантовый компьютер принципиально отличается от любого домашнего?

— Принципом работы: квантовый компьютер гораздо быстрее. Например, в поисках ответа нам нужно открыть десять дверей. Человек, как и обычный компьютер, будет открывать по одной двери. А квантовый компьютер может одновременно открыть все двери. Хорошо, если этих дверей только десять, а если триллион? Для таких вычислений нужны очень мощные устройства. Квантовый компьютер — это исследовательский инструмент, который будет полезен в различных областях, где нужны вычисления.

— Чем такая технология полезна в повседневной жизни?

— Например, квантовый компьютер будет помогать в создании новых лекарств, потому что сможет просчитать химические реакции компонентов нового препарата. Поможет сконструировать крыло самолета, потому что сумеет моделировать физические процессы. Будет полезен в финансовой сфере, логистике. Просчитает общественные процессы в масштабах всех страны: подскажет, какую область науки или экономики надо развивать, чтобы всем жилось хорошо. Также квантовый компьютер будет эффективным инструментом для обучения нейросетей. Но пока такой технологии еще не создано. Ученые всего мира работают над этой идеей. По моей оценке, понадобится еще лет 10-20 для того, чтобы квантовые компьютеры научились решать некоторые из описанных задач быстрее классических.

Чтобы «мозг» не перегревался

— Чем выделяется наша отечественная разработка? Почему он ионный?

— Существуют квантовые компьютеры, основанные на разных физических системах. Так центральной системой нашего компьютера является «квантовый процессор» — камера с абсолютным вакуумом, в которую испаряется нейтральный поток металла иттербия — такой металл в устройстве обычного компьютера точно не встретить. Электромагнитная ловушка захватывает нужные ионы, и они охлаждаются лазером до температур ниже, чем в космосе, а другой вид лазера кодирует в ионах всю информацию. Ионы — это «извилины» нашего «мозга», которых у нас целых восемь штук. А чтобы «мозг» не перегревался, для его охлаждения мы используем жидкий азот.

— А какой алгоритм задал президент во время Форума?

— Владимир Владимирович подключился удаленно к нашей облачной платформе и запустил расчет молекулы гидрида лития — самый полезный и самый сложный на сегодняшний момент алгоритм, который наш компьютер умеет делать. Нам полезно знать, как ведет себя эта молекула, чтобы лучше делать литиевые аккумуляторы.

— С лекарствами и самолетами все понятно, а зачем нам учить нейросети?

— Нейросеть это искусственный интеллект и ваш безграничный помощник. Если вы капитан своей жизни, то у вас теперь в распоряжении есть и «второй пилот». Нейросети можно поручить, если так можно выразиться, всю «грязную интеллектуальную работу»: узнать рецепт пирога, выяснить, как лучше сажать морковь, если что-то болит, получить совет, к какому врачу обратиться. Если вы пишете тексты, она может набросать вам бесконечное количество черновиков, а потом исправить их, если вас результат не устроил. Нейросеть думает за человека в любых повседневных задачах.

— Если нейросеть думает за человека и к тому же она обучаемая, не приведет ли это впоследствии к тому, что люди сами перестанут тянуться к знаниям?

— Вообще, одна из особенностей человеческой натуры это любознательность, любопытность. И тут нейросеть очень удачный инструмент, позволяющий черпать знания быстрее. Если у человека нет тяги узнать что-то новое, у него что будет нейросеть, что не будет нейросети — на его жизнь это никак не повлияет.

Погоня за квантами

В гонке по освоению квантовых технологий участвуют многие страны. Для Китая такие технологии в исследованиях являются приоритетом, в 2018 году было выделено 10 млрд долларов на строительство Национальной лаборатории квантовых наук. США инвестировали в квантовые технологии $1,2 млрд, и планируют потратить еще больше в рамках инфраструктурного плана президента Байдена. Не отстают Германия, Канада, Индия и Япония — там тоже готовы раскошелиться ради науки.

*Квантовый ионный компьютер — совместный проект Российского квантового центра с Физическим институтом им. П.Н. Лебедева РАН, Сколковского института науки и технологий и ФТИАН им. К. А. Валиева.

https://aif.ru/society/science/otkryt_trillion_dverey_sozdatel_kvantovogo_kompyutera_obuchaet_neyroseti

 

Подкатегории