СМИ о нас

14.02.23 14.02.2023 Волга Ньюс. Как зародилась жизнь: самарские ученые создают органические молекулы в лабораторном космосе

Ученые из Самарского филиала Физического института Академии наук им. П.Н.Лебедева (ФИАН) ищут ответ на вопрос, издавна волновавший человечество: откуда взялась жизнь? В филиале создан Центр лабораторной астрофизики с уникальным оборудованием, позволяющим воспроизводить условия космоса и досконально исследовать механизм образования сложных углеводородов, являющихся основой всей органики.

Теории о возникновении жизни разной степени правдоподобности возникали у людей с незапамятных времен. Но до недавнего времени человечество обладало довольно скудным инструментарием для познания окружающего мира. Технологический прорыв, которого человечество достигло в последние десятилетия, позволил ученым серьезно продвинуться в изучении процессов возникновения сложных органических молекул из простых неорганических.

Сейчас ученые считают, что наиболее вероятной предпосылкой зарождения жизни являются абиогенез и химическая эволюция. Абиогенезом называют процесс возникновения распространенных в природе сложных органических веществ вне живого организма и без участия ферментов. "Строительным материалом" при этом служат простые неорганические вещества.

Конечно же, абиогенез не приводит к возникновению нормально функционирующей клетки живого организма, однако он может создать вещества, из которых эта клетка построена. И здесь в дело вступает химическая эволюция, на протяжении миллионов лет порождавшая бессчетное множество молекул, часть которых имеет принципиальное значение для существования живых организмов, например, РНК. В итоге присущая сложным системам самоорганизация привела к возникновению жизни, а миллионы лет эволюции создали окружающую нас реальность - в которую, наряду с неживой материей, входят и живые организмы разной степени разумности.

В космических условиях

Конечно же, полный и развернутый ответ на вопрос "как именно появились живые организмы" человечество получит еще не скоро, это комплексная и многогранная задача. Но в одном из основных направлений уже наметился прорыв - нашлись убедительные доказательства того, что сложные органические молекулы могут самостоятельно синтезироваться в космическом пространстве. Это происходит благодаря воздействию ионизирующего излучения на покрытые льдом наночастицы в молекулярно-пылевых облаках, из которых формируются звездные системы, в том числе и Солнечная. Но каким образом происходит синтез сложных молекул в условиях сверхнизких температур и жесткого космического излучения, пока неизвестно. Ответ на этот вопрос приблизит человечество к пониманию химической эволюции Солнечной системы и разгадке происхождения жизни на Земле.

Именно этим и занимаются ученые Самарского филиала ФИАН в Центре лабораторной астрофизики, проводя эксперименты, воспроизводящие условия молекулярных облаков и областей звездообразования. Исследования ведутся в рамках пятилетнего мегагранта правительства РФ "Происхождение и эволюция органических молекул в нашей Галактике".

В своих экспериментах самарские ученые воспроизводят условия межзвездного пространства, где при низких температурах газы конденсируются на поверхности частиц, образуя лед. В вакуумной камере на охлажденную до криогенной температуры пластинку намораживают пленку из запускаемых в определенных объемах паров воды, метана, кислорода, азота, углекислого газа (CO₂), угарного газа (CO), которые являются основными компонентами молекулярных облаков в космосе.

После этого образовавшуюся пластинку бомбардируют разными частицами, например, фотонами жесткого диапазона - вакуумным ультрафиолетом. Получившиеся в результате продукты анализируются высокочувствительным масс-спектрометром. Это позволяет экспериментальным путем выяснить, как в космосе образуется та или иная молекула.

"Этим предстоит заниматься еще многим лабораториям долгие годы. Главное, что стадия образования крупных молекул из мелких может успешно протекать даже в космосе. И это часть ответа на вопрос, одиноки ли мы во Вселенной или еще где-то есть жизнь", - отмечает координатор мегагранта, директор Самарского филиала ФИАН, доктор физико-математических наук Валерий Азязов.

Для таких экспериментов нужно было спроектировать, построить и запустить установку для лабораторного изучения криогенных поверхностных процессов. Основные требования - возможность достижения сверхчистого вакуума для поддержания химической чистоты образцов льда, точный контроль температуры ледяной пленки в диапазоне от 5 до 300 К, возможность облучения образца электронным пучком или потоком ультрафиолетовых фотонов для запуска химических процессов. И, разумеется, использование масс-спектрометрии для определения продуктов произошедших внутри установки химических реакций.

Строящаяся в Самаре установка разработана с учетом опыта, полученного при работе с аналогичной установкой в Гавайском университете на Маноа, в лаборатории руководителя мегагранта, профессора Ральфа Кайзера. В Самарском филиале ФИАН для Центра лабораторной астрофизики были выделены помещения общей площадью более 200 кв. м. На средства мегагранта отремонтировали лаборатории и закупили современное дорогостоящее оборудование: высокопроизводительные насосы, позволяющие получать сверхглубокий вакуум, системы регистрации химических соединений на основе высокочувствительной масс-спектрометрии и т.д.

Сотрудничество продолжается

К сожалению, после начала СВО во взаимодействии с иностранными учеными и компаниями появились некоторые проблемы. Включение ФИАН в санкционные списки в определенной степени является оценкой его заслуг в области квантовых технологий, но такое "признание" привело к дополнительным трудностям. Например, необходимую для установки вакуумную камеру, к которой предъявляются очень высокие требования по чистоте и глубине вакуума, пришлось поискать. Ряд иностранных компаний, имеющих опыт изготовления подобных установок, отказались от сотрудничества, ссылаясь на санкции. На начало года было получено только одно коммерческое предложение от зарубежной компании, но и она впоследствии отказалась от своего предложения.

В России, разумеется, тоже есть производители высоковакуумных установок, но они также сегодня находятся в трудном положении из-за нарушения логистических связей. Несмотря на эти трудности, в настоящее время изготовление основной вакуумной камеры и других не менее сложных частей установки производится компанией "Опытное конструкторское бюро "Оптические системы" (Санкт-Петербург).

Сотрудничество же с руководителем гранта Ральфом Кайзером продолжается. Как отмечает Валерий Азязов, современная наука невозможна без коллабораций, а научные связи, возникающие между исследователями, нацеленными на решение общих задач, трудно разрушить политикой.

"В университете на Маноа под руководством Ральфа Кайзера проводятся эксперименты, результаты которых интерпретируются с помощью сложнейших расчетов, которые проводятся здесь, в Самаре. Уже вышло много совместных публикаций в самых высокорейтинговых журналах и они продолжают появляться даже после начала СВО", - говорит ученый, добавляя, что, впрочем, Самарский филиал ФИАН уже сталкивался с пока единичными отказами некоторых журналов публиковать статьи под предлогом санкций.

Координатор гранта и заместитель руководителя ЦЛА, директор СФ ФИАН доктор физико-математических наук Валерий Азязов:

- Ведущие сотрудники проекта и молодые исследователи, в том числе студенты Самарского университета, аспиранты Самарского университета и ФИАН, получили большой опыт работы со сложным современным оборудованием, уверенно чувствуют себя в астрохимическом моделировании и квантово-механических расчетах. Они привыкли к высокому темпу работы, к требованиям, предъявляемым к качеству исследований, к публикационной активности и другим атрибутам напряженной исследовательской деятельности. Они смотрят в будущее с оптимизмом. Для нас нет сомнений, что проект стоило начинать и необходимо продолжать".

https://volga.news/article/654075.html

14.02.23 14.02.2023 Пущинская среда. Пущинцы смогут сдать нормы ГТО по лыжам 18 февраля

В субботу, 18 февраля, на лыжной трассе «ФИАН» пройдет тестирование физической подготовленности обучающихся образовательных учреждений и взрослого трудоспособного населения, относящихся к I–XI ступеням Всероссийского физкультурно-спортивного комплекса «Готов к труду и обороне» (ГТО)».

Выполнить нормы ГТО смогут все, кто прошел регистрацию и подтвердил персональные данные на сайте gto.ru, а также получил медицинский допуск.

Тестирование состоится 18 февраля с 10:00 до 12:00 на лыжной трассе «ФИАН». Можно будет сдать бег на лыжах.

https://inpushchino.ru/news/fizkultura-i-sport/puschintsy-smogut-sdat-normy-gto-po-lyzham-18-fevralja

13.02.23 13.02.2023 Научная Россия. А.В. Наумов – лауреат конкурса «Человек года 2022» в Троицке

По итогам конкурса на присуждение ежегодной премии за вклад в развитие городского округа Троицк «Человек года» лауреатом в номинации «Наука» стал руководитель Троицкого обособленного подразделения Физического института им. П.Н. Лебедева РАН, член-корреспондент РАН Андрей Витальевич Наумов.

Церемония прошла в 14-й раз и традиционно была приурочена к Дню российской науки. Лауреатов выбрали тайным голосованием конкурсного жюри, состоящего из руководителей организаций, почетных граждан города, лауреатов конкурса предыдущих лет.

В 2022 году Андрей Наумов получил значимые результаты в области физики новых перспективных материалов фотоники: опубликовано более 20 статей в высокорейтинговых изданиях, зарегистрированы два авторских свидетельства, подготовлены два патента на изобретения. Результаты уникальных для РФ экспериментов по трёхмерной флуоресцентной наноскопии опубликованы в ведущих международных журналах «Успехи физических наук», Journal of Chemical Physics, Membranes, Applied Sciences, Фотоника (Photonics Russia), «Известия РАН. Серия физическая».

Еще одно направление связано с развитием техники спектрохимического анализа веществ в предельно низких концентрациях с использованием эффекта поверхностно-усиленного комбинационного рассеяния света на наноструктурированных металлизированных метаповерхностях. Научный коллектив под руководством А.В. Наумова в 2022 году получил статус Ведущей научной школы РФ, поддержанной грантом Президента РФ.

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/av-naumov-laureat-konkursa-celovek-goda-2022-v-troicke

 

13.02.23 13.02.2023 Атомная Энергия 2.0. Руководитель Троицкого обособленного подразделения ФИАН Андрей Наумов стал лауреатом конкурса «Человек года 2022» в Троицке

По итогам конкурса на присуждение ежегодной премии за вклад в развитие городского округа Троицк «Человек года» лауреатом в номинации «Наука» стал руководитель Троицкого обособленного подразделения Физического института им. П.Н. Лебедева РАН, член-корреспондент РАН Андрей Витальевич Наумов. 

Церемония прошла в 14-й раз и традиционно была приурочена к Дню российской науки. Лауреатов выбрали тайным голосованием конкурсного жюри, состоящего из руководителей организаций, почетных граждан города, лауреатов конкурса предыдущих лет. 

В 2022 году Андрей Наумов получил значимые результаты в области физики новых перспективных материалов фотоники: опубликовано более 20 статей в высокорейтинговых изданиях, зарегистрированы два авторских свидетельства, подготовлены два патента на изобретения. Результаты уникальных для РФ экспериментов по трёхмерной флуоресцентной наноскопии опубликованы в ведущих международных журналах «Успехи физических наук», Journal of Chemical Physics, Membranes, Applied Sciences, Фотоника (Photonics Russia), «Известия РАН. Серия физическая». 

Еще одно направление связано с развитием техники спектрохимического анализа веществ в предельно низких концентрациях с использованием эффекта поверхностно-усиленного комбинационного рассеяния света на наноструктурированных металлизированных метаповерхностях. Научный коллектив под руководством А.В. Наумова в 2022 году получил статус Ведущей научной школы РФ, поддержанной грантом Президента РФ.

https://www.atomic-energy.ru/news/2023/02/13/132716

10.02.23 10.02.2023 Телеграм-канал Новости Троицка. А.В. Наумов – лауреат премии «Человек года – 2022» в номинации «Наука»

Сегодня в номинации «Наука» были награждены сразу два ученых.

Андрей Витальевич Наумов

Руководитель ТОП ФИАН, главный научный сотрудник и заведующий отделом спектроскопии конденсированных сред ИСАН, завкафедрой теоретической физики МПГУ. Член-корреспондент РАН по Отделению физических наук по специальности «физика».

В 2022 году учёный получил значимые результаты в области физики новых перспективных материалов фотоники: опубликовано более 20 статей в высокорейтинговых изданиях, зарегистрированы два авторских свидетельства, подготовлены два патента на изобретения. Результаты уникальных для РФ экспериментов по трёхмерной флуоресцентной наноскопии опубликованы в ведущем международном журнале «Успехи физических наук». Андрей Наумов организовывал и проводил научные, научно-образовательные и просветительские мероприятия, в том числе VI Троицкую школу повышения квалификации преподавателей физики.

https://t.me/admtroitsk/10811

13.02.23 13.02.2023 Российская академия наук. Члены РАН – лауреаты конкурса «Человек Года 2022» в наукограде Троицке

10 февраля в наукограде Троицке (городской округ Троицк в городе Москве) прошла торжественная церемония награждения лауреатов конкурса «Человек Года 2022». Церемония проходит в 14-й раз и традиционно приурочена к Дню российской науки.

Лауреаты выбираются тайным голосованием конкурсного жюри, состоящего из руководителей организаций, почетных граждан города, лауреатов конкурса предыдущих лет. Конкурс проводится по нескольким номинациям: «Наука», «Культура», «Образование», «Физкультура и спорт», «Инновации и бизнес», «Городская среда», «Молодой ученый», «Город и общество».

Согласно положению о конкурсе победители выбираются среди номинантов, внесших наиболее значимый вклад в развитие Троицка в течение предыдущего года по соответствующему направлению. Имена лауреатов из тройки финалистов по каждому направлению оглашаются во время торжественной церемонии со сцены Троицкой детской школы искусств им. М. В. Глинки.

По итогам 2022 года победителями в наиболее значимой для наукограда номинации «Наука» стали сразу два представителя Российской академии наук (голоса членов жюри впервые за историю конкурса разделились поровну).

Член-корреспондент РАН, профессор РАН, д.ф.-м.н. Андрей Витальевич Наумов (руководитель Троицкого подразделения ФИАН им. П. Н. Лебедева, зав. отделом Института спектроскопии РАН, зав. кафедрой Московского Педагогического Государственного Университета). Результаты научной работы А. В. Наумова и возглавляемого им коллектива в области синтеза, исследования и приложений новых наноструктурированных материалов фотоники в 2022 году были опубликованы в ведущих научных журналах («Успехи физических наук», Journal of Chemical Physics и др.), легли в основу нескольких авторских свидетельств, монографии. В частности, значительный интерес вызывали работы по трехмерной флуоресцентной наноскопии с детектированием одиночных квантовых излучателей – молекул и полупроводниковых квантовых точек.

Еще одно направление связано с развитием техники спектрохимического анализа веществ в предельно низких концентрациях с использованием эффекта поверхностно-усиленного комбинационного рассеяния света на наноструктурированных металлизированных метаповерхностях. Научный коллектив под руководством А. В. Наумова в 2022 году получил статус Ведущей научной школы РФ, поддержанной грантом Президента РФ.

Член-корреспондент РАН, профессор РАН д.ф.-м.н. Сергей Вадимович Троицкий (главный научный сотрудник Института ядерных исследований РАН, профессор МГУ им. М. В. Ломоносова), автор более 320 научных работ, специалист в области квантовой теории поля, физики и астрофизики элементарных частиц, автор программы развития ИЯИ РАН в области астрофизики частиц, разработчик проекта федеральной целевой программы «Нейтрино и астрофизика частиц».

В 2022 году С. В. Троицким было открыто нейтринное излучение Галактики. На основе анализа публично доступных данных о наиболее высокоэнергичных нейтринных событиях, зарегистрированных экспериментом IceCube, Сергей Троицкий установил наличие галактической анизотропии в направлениях прихода нейтрино с энергиями выше 200 тераэлектронвольт, что с высокой статистической точностью доказывает наличие нейтрино в Млечном Пути. Результат опубликован в престижном журнале Astrophysical Journal Letters.

В номинации «Город и общество» лауреатом стал академик РАН Вадим Вениаминович Бражкин (директор Института физики высоких давлений им. Л. Ф. Верещагина РАН), специалист в области физики фазовых переходов, физики высоких давлений и физики неупорядоченных сред, физики конденсированного состояния, автор около 500 научных публикаций. В 2022 году при непосредственном участии В. В. Бражкина в Троицке была организована и проведена серия мероприятий, направленных на популяризацию науки и достижений ученых РАН.

В церемонии награждения также приняла участие заместитель академика-секретаря ОФН РАН д.ф.-м.н. Наталья Леонидовна Истомина, вручившая награды лауреату конкурса в номинации «Образование».

Фотографии: А. Рузаев, М. Федин.

https://new.ras.ru/activities/news/chleny-ran-laureaty-konkursa-chelovek-goda-2022-v-naukograde-troitske/

08.02.23 08.02.2023 Российская газета. Как из прошлого заглянуть в реактор будущего

Увидеть свечение Черенкова и взять интервью над реактором - это не страшно, если рядом профессионалы. / Александр Емельяненков

Этот эффект - загадочное голубое свечение под слоем воды, в которую погружен радиоактивный предмет, - был обнаружен советским физиком Павлом Черенковым. А случилось это в 1934 году, когда Сергей Вавилов организовал новый физический институт и вместе с ним переехал из Ленинграда в Москву.

Теперь это широко известный ФИАН, давший стране и миру семь нобелевских лауреатов. Уже в 1937 году советские физики Игорь Тамм и Илья Франк объяснили теоретически суть того, что обнаружил их коллега Павел Черенков. А 20 лет спустя, в 1958-м, все трое были отмечены Нобелевской премией по физике - за открытие и истолкование эффекта Черенкова.

Сергей Вавилов такой награды получить не мог, зато стал президентом Академии наук СССР и возглавлял ее с 1945-го до дня своей смерти 25 января 1951-го. А загадочное голубое свечение, открытое в созданном им институте, теперь называют излучением Вавилова-Черенкова.

Увидеть его воочию и получить объяснение, что называется, тут и сейчас довелось во время командировки в Димитровград и первого знакомства с НИИ атомных реакторов. Пояснения мне давал руководитель реакторного исследовательского комплекса Алексей Ижутов прямо у открытого технологического люка над работающим реактором РБТ-6. Внутри установки мощностью 6 МВт, под светящимся слоем прозрачной воды, шла цепная ядерная реакция: урановые мишени облучались потоком нейтронов для получения изотопов...

Сейчас на территории Государственного научного центра НИИАР, который был создан по инициативе академика Курчатова в 1956 году, шесть действующих исследовательских реакторов: МИР, СМ, БОР-60, ВК-50, РБТ-6 и РБТ-10/2. И это без преувеличения крупнейший в Европе научно-технологический комплекс.

Чтобы он и впредь сохранял лидирующие позиции, там же, в Димитровграде, развернуто строительство Многоцелевого исследовательского реактора на быстрых нейтронах. Его уже сейчас называют самым мощным из действующих, сооружаемых и проектируемых исследовательских реакторов этого типа.

- МБИР - абсолютно уникальная машина, - убежденно заявляет вице-президент РАН академик Степан Калмыков. - Он не дублирует какие-то другие, уже созданные установки. И те люди, которые его разрабатывали, делали уникальную работу. Она будет востребована для решения самого широкого круга задач.

Важно и другое: концепция МБИР изначально предполагала организацию на его базе международной исследовательской программы в разных областях, где необходимы нейтроны.

- Реактор еще не запущен, а мы уже формируем научную программу, - рассказал академик Калмыков. - К консорциуму присоединился Узбекистан и его Институт ядерной физики, идут переговоры с Китаем. Свой интерес имеют коллеги в Объединенном институте ядерных исследований в Дубне, а это еще несколько стран, которые используют нейтроны, атомное излучение в решении фундаментальных и прикладных задач.

 

https://rg.ru/2023/02/08/siianie-cherenkova-i-svet-kurchatova.html

03.02.23 03.02.2023 Новые округа. Необъяснимо, но факт

Каким вы представляете современного ученого? Наверняка воображение рисует седовласого серьезного мужчину, который день и ночь сидит за чертежами и даже не улыбается... По крайней мере портреты таких людей всегда висели в вашей школе над классной доской. «НО» в честь 8 февраля — дня науки решили попытаться доказать, что ученые XXI века — люди творческие, которые точно не обделены чувством юмора.

ДОКАЗАТЕЛЬСТВО 1. Творческое

Чтобы выявить закон всемирного тяготения, на Ньютона должно было упасть яблоко. А Архимед для своего закона должен был просто искупаться в ванной... Один из наших троицких ученых, руководитель ТОП ФИАН Андрей Наумов в этом ничего удивительного не видит. Ему, конечно, никакие яблоки на голову не падали. Но для продвижения науки у нашего физика есть свои, менее опасные методы.

— И у каждого ученого находятся какие-то свои истории, — говорит Андрей Наумов. — А все потому, что никто не может понять, в какой момент рождается идея. Я, например, будучи школьником, если не мог решить какую-то сверхсложную олимпиадную задачу, начинал играть на баяне! И именно в этот момент приходило решение. А во взрослом возрасте... Скажу честно, когда мне нужно было написать программу для обработки данных, это неплохо получалось под классическую музыку и группу «ABBA», а вот сложные вещи, те же аналитические уравнения, хорошо решаются под Вагнера.

Необъяснимо... Но факт!

ДОКАЗАТЕЛЬСТВО 2. Житейское

А еще идеи приходят тогда, когда их совсем не ждешь. Чтобы продемонстрировать потенциал целого физического направления — внутрирезонаторной лазерной спектроскопии, коллегам Андрея Наумова — спектроскопистам понадобилась всего лишь бутылка... водки! Собирались ее пить ученые или нет, уже никто не скажет. Но то ли ради шутки, а может и всерьез, ученые решили определить, сколько в ней содержится метанола (метилового спирта), который опасен для организма.

— Причем не вскрывая бутылки! — рассказывает Андрей Витальевич. — И у коллег это прекрасно получилось, а их исследование легло в основу востребованной технологии, благодаря чему мы можем узнать, например, не содержится ли опасного красителя в той же газировке. А в США по такому принципу создали считывающее устройство для трасс, которое на расстоянии может измерять пары этанола в машине. А значит, определять людей в состоянии алкогольного опьянения до того, как машину остановит полиция

ДОКАЗАТЕЛЬСТВО 3. Признанное

А иногда ученым скучно сидеть за формулами. И они начинают доказывать странные вещи. Многие из нас слышали о Шнобелевской премии за необычные открытия в науке, которые заставляют посмеяться, а потом задуматься. Вот так получилось и с французским коллегой Андрея Наумова. Он просто наблюдал за кошкой. А потом...

— Опубликовал исследование под названием «Кошки: они скорее жидкие или твердые». И пришел к выводу, что кошка — существо аморфное и строго определенной формы нет, потому что может быть и твердой, и жидкой, — рассказывает Андрей Наумов.

Если не верите, предложите своему пушистому любимцу сесть в коробку — он прекрасно займет ее. А если найдете сосуд цилиндрической формы, котику будет удобно и в нем! К слову, из троицких ученых никто Шнобелевскую премию пока не получал.

В ТЕМУ

10 миллионов шведских крон (примерно 900 тысяч долларов) получает лауреат Шнобелевской премии. Также им полагается диплом и медаль. Последняя может быть сделана из фольги или, например, в виде челюстей на подставке. Ученому полагается сертификат, подтверждающий получение премии. Его подписывают три лауреата Нобелевской премии. В 21-м году среди победителей было за исследование изменения мяуканья, фырканья и мурлыканья кошек в ответ на перемены в интонации людей.

https://newokruga.ru/neobyasnimo-no-fakt/

02.02.23 02.02.2023 Атомная Энергия 2.0. Международная группа учёных уточнила свойства атома мюония

Ускоритель для получения мюонов в Институте Пола Шеррера

Группа ученых из Физического института им. П. Н. Лебедева РАН (ФИАН) и Швейцарской высшей технической школы Цюриха (ETH Zurich) под руководством профессора Паоло Кривелли (Paolo Crivelli) измерила частоту перехода между 2S и 2P подуровнями, лэмбовский сдвиг и 2S-расщепление в мюонии — экзотическом атоме, состоящем из мюона и электрона. Эта работа поможет ученым в поисках отклонений от главной физической теории — Стандартной модели — и путей к Новой физике. Об исследовании сообщила пресс-служба ФИАН.

«Мы показали возможность измерения перехода, который в перспективе, если увеличить статистику измерений и уменьшить ошибки, позволит наиболее точно измерить лэмбовский сдвиг в атоме мюония», — говорит старший научный сотрудник Лаборатории «Оптика сложных квантовых систем» ФИАН Артём Головизин.

Мюон — это фундаментальная частица, лептон, которая может обладать как положительным, так и отрицательным зарядом. Она похожа на электрон, обладает таким же спином 1/2, но в 207 раз тяжелее. При этом время жизни мюонов крайне мало — 2,2 × 10-6 с. Мюоны впервые были обнаружены в космическом излучении Андерсоном и Неддермайером в 1936 году.

Боровская модель устройства атомов говорит, что уровень энергии электронов в атоме задается номером его оболочки — так называемым главным квантовым числом. А электронная оболочка представляет собой симметричное распределение электронов по орбиталям вокруг ядра. При переходе с основного уровня на первый возбужденный уровень у электрона есть две возможных конфигурации того, как он будет распределен в атоме. Он может быть либо сферически распределен, либо гантелеобразно. Сферическое положение — это S-орбиталь. А гантелеобразное — это P-орбиталь. При этом на S-орбитали будет один электронный уровень 2S1/2, а электронный уровень P-орбитали будет состоять из двух подуровней 2P1/2 и 2P3/2. Число ½ здесь означает полный момент электрона, который обозначается буквой J и может быть равен 1/2, 3/2 и так далее.

Согласно теории Дирака уровни 2S1/2 и 2P1/2, то есть с одинаковым полным моментом электрона J=1/2, не должны отличаться по энергии. Однако в ходе экспериментов ученые обнаружили, что на самом деле 2P-уровень энергий разделен на два подуровня: 2P1/2 и 3P1/2. И оказалось, что когда орбиталь электрона имеет гантелеобразную форму, уровень ее энергии ниже, чем когда электрон имеет сферическую форму. Этот сдвиг энергий называется лэмбовским сдвигом.

Когда были открыты мюоны, ученые обнаружили интересную особенность: их проще изучать, чем протон. Протон — это составная частица, состоящая из кварков. Чтобы описать его свойства, нужно применять теорию квантовой электродинамики и квантовую хромодинамику — это требует сложных расчетов, которые трудно проверять в экспериментах. Для мюона — элементарной частицы — ситуация проще, в этом случае достаточно квантовой электродинамики.

Почти сразу после открытия ученые заметили аномалии в измерениях некоторых характеристик мюона. Все расчеты, которые делались в других системах с электроном, совпадали с экспериментами. То есть для электрона квантовая электродинамика работает. Но почему-то для мюона она дает заметное расхождение с результатами экспериментов. Недавние исследования G-2 в FermiLab подтвердили, что это расхождение усиливается. Это может означать, что есть какие-то неизвестные нам взаимодействия мюона с чем-то, например, с какой-то новой частицей, которая взаимодействует почему-то только с мюоном. Это одно из указаний, что Стандартная модель не полна.

Для высокой точности измерений требуется источник интенсивного пучка частиц мюония, чтобы уменьшить статистические ошибки. Такой источник есть в швейцарском Институте Пола Шеррера. Именно там проводит исследования коллаборация Mu-Mass, в которую входят физики из Швейцарской высшей технической школы Цюриха и ФИАНа. В этом институте есть современный ускоритель, в котором протоны разгоняются до высоких скоростей и бомбардируют мишень, в результате чего рождаются мюоны.

«Уникальность нашего измерения обусловлена тем, что мы работаем на довольно интенсивном пучке мюонов, причем холодных. Этот факт позволил нам как раз улучшить, измерить частоту этого перехода за счет того, что мы получали значительно больше мюонов, чем до этого или чем в каких-либо других лабораториях можно получить», — говорит Артём Головизин.

В своей работе ученые создавали пучок мюонов, который с помощью электромагнитных полей направлялся сквозь тонкую карбоновую фольгу толщиной 10 нанометров. Проходя через нее, некоторые мюоны захватывали электрон, образовывая таким образом мюоний. Он очень похож на атом водорода, только протон заменен на мюон. Примерно у 10 % мюониев электроны оказываются на подуровне 2S1/2. Именно такие атомы интересовали ученых.

Далее пучок направлялся через электромагнитное поле на частоте вблизи 580 МГц, что вызывало внутри мюония резонанс и переход 2S состояния в 2P — перескок из верхнего уровня на нижний уровень. Фиксируя этот переход, ученые измеряли резонансную частоту перехода, из чего в дальнейшем, используя вычисленные значения сверхтонких расщеплений 2S и 2P уровней (557,9 МГц и 186,1 МГц), пересчитывали значение лэмбовского сдвига, которое оказалось равным 1045,5 МГц.

Затем ученые измерили частоту перехода между подуровнями 2S1/2, F=0 и 2P1/2, F=1, где F — это номер сверхтонкого подуровня. Он оказался равен 580,6 МГц. Далее, взяв из предыдущей работы измерение частоты другого перехода между подуровнями 2S1/2, F=1 и 2P1/2, F=1, ученые по разнице частот этих двух переходов определили расщепление 2S уровня, равное 559,6 МГц.

«Мы прикладываем электромагнитное поле частотой вблизи 580 мегагерц. И когда мы прикладываем это поле, с какой-то вероятностью может произойти переход с верхнего уровня на нижний уровень. Если это произойдет, то нижний уровень очень быстро распадется в 1S состояние. Если этого не произойдет, то атом останется в 2S состоянии, и мы сможем его зарегистрировать. В зависимости от частоты прикладываемого радиочастотного поля, мы наблюдаем резонанс. Когда мы приближаемся к резонансу, мы видим, что часть атомов, которые летят в состоянии 2S, куда-то пропадает. И вот как раз из этих данных мы и можем определить резонансную частоту перехода», — поясняет Артём Головизин.

Так как протоны после разгона обладают высокой скоростью и энергией, то и мюоны имеют большую скорость. Однако чтобы эффективно производить мюоний, и тем более резонансно возбуждать переходы, нужно использовать медленные мюоны. Тогда больше шансов, что они захватят электрон и ученым удастся их измерить, иначе мюон может просто пролететь область возбуждения за очень короткое время, не захватив ни одного электрона. Поэтому ученые замедляют мюоны, чтобы сделать процесс захвата более эффективным. В эксперименте ученые тормозили мюоны с помощью неонового замедлителя, снижая их энергию с 28 мегаэлектронвольт до 20 электронвольт. Изначальная скорость мюонов составляет примерно четверть скорость света, а после замедления падает в 1000 раз.

Ученые надеются, что в будущем им удастся снизить статистическую погрешность, и тогда измерение 2S1/2, F=0 -2P1/2, F=1  перехода поможет точно рассчитать лэмбовский сдвиг, так как именно этот переход лучше подходит для точных измерений. Пока что ученые сделали первый шаг в этом направлении. Тогда, если обнаружится расхождение экспериментальных результатов с теоретическими расчетами и оно будет меньше погрешности измерений, это будет указывать на то, что ученые столкнулись с явлением, выходящим за пределы Стандартной модели.

«Мы пытаемся максимально точно измерить экспериментально это значение. И если не будет расхождения, то ничего интересного сказать не получится. Но если расхождение будет, это позволит что-то предполагать. Но чтобы понять, есть расхождение или нет, надо увеличивать точность измерений, потому что пока что ошибка измерений больше, чем возможное расхождение, которое есть между экспериментом и теорией», — говорит Артём Головизин.

Конечной целью ученых является определение массы мюона. Оно необходимо для более точных расчетов, так как предсказать массу теоретическим путем невозможно.

https://www.atomic-energy.ru/news/2023/02/02/132459

01.02.23 01.02.2023 Science-digest. Мюонный атом и новая физика

Группа ученых из Физического института им. П. Н. Лебедева РАН (ФИАН) и Швейцарской высшей технической школы Цюриха (ETH Zurich) под руководством профессора Паоло Кривелли (Paolo Crivelli) измерила частоту перехода между 2S и 2P подуровнями, лэмбовский сдвиг и 2S-расщепление в мюонии — экзотическом атоме, состоящем из мюона и электрона. Эта работа поможет ученым в поисках отклонений от главной физической теории — Стандартной модели — и путей к Новой физике. Об исследовании сообщила пресс-служба ФИАН.

Ускоритель для получения мюонов в Институте Пола Шеррера
© Paul Scherrer Institut

«Мы показали возможность измерения перехода, который в перспективе, если увеличить статистику измерений и уменьшить ошибки, позволит наиболее точно измерить лэмбовский сдвиг в атоме мюония», — говорит старший научный сотрудник Лаборатории «Оптика сложных квантовых систем» ФИАН Артём Головизин.

Мюон — это фундаментальная частица, лептон, которая может обладать как положительным, так и отрицательным зарядом. Она похожа на электрон, обладает таким же спином 1/2, но в 207 раз тяжелее. При этом время жизни мюонов крайне мало — 2,2 × 10-6 с. Мюоны впервые были обнаружены в космическом излучении Андерсоном и Неддермайером в 1936 году.

Боровская модель устройства атомов говорит, что уровень энергии электронов в атоме задается номером его оболочки — так называемым главным квантовым числом. А электронная оболочка представляет собой симметричное распределение электронов по орбиталям вокруг ядра. При переходе с основного уровня на первый возбужденный уровень у электрона есть две возможных конфигурации того, как он будет распределен в атоме. Он может быть либо сферически распределен, либо гантелеобразно. Сферическое положение — это S-орбиталь. А гантелеобразное — это P-орбиталь. При этом на S-орбитали будет один электронный уровень 2S1/2, а электронный уровень P-орбитали будет состоять из двух подуровней 2P1/2 и 2P3/2. Число ½ здесь означает полный момент электрона, который обозначается буквой J и может быть равен 1/2, 3/2 и так далее.

Согласно теории Дирака уровни 2S1/2 и 2P1/2, то есть с одинаковым полным моментом электрона J=1/2, не должны отличаться по энергии. Однако в ходе экспериментов ученые обнаружили, что на самом деле 2P-уровень энергий разделен на два подуровня: 2P1/2 и 3P1/2. И оказалось, что когда орбиталь электрона имеет гантелеобразную форму, уровень ее энергии ниже, чем когда электрон имеет сферическую форму. Этот сдвиг энергий называется лэмбовским сдвигом.

Когда были открыты мюоны, ученые обнаружили интересную особенность: их проще изучать, чем протон. Протон — это составная частица, состоящая из кварков. Чтобы описать его свойства, нужно применять теорию квантовой электродинамики и квантовую хромодинамику — это требует сложных расчетов, которые трудно проверять в экспериментах. Для мюона — элементарной частицы — ситуация проще, в этом случае достаточно квантовой электродинамики.

Почти сразу после открытия ученые заметили аномалии в измерениях некоторых характеристик мюона. Все расчеты, которые делались в других системах с электроном, совпадали с экспериментами. То есть для электрона квантовая электродинамика работает. Но почему-то для мюона она дает заметное расхождение с результатами экспериментов. Недавние исследования G-2 в FermiLab подтвердили, что это расхождение усиливается. Это может означать, что есть какие-то неизвестные нам взаимодействия мюона с чем-то, например, с какой-то новой частицей, которая взаимодействует почему-то только с мюоном. Это одно из указаний, что Стандартная модель не полна.

Для высокой точности измерений требуется источник интенсивного пучка частиц мюония, чтобы уменьшить статистические ошибки. Такой источник есть в швейцарском Институте Пола Шеррера. Именно там проводит исследования коллаборация Mu-Mass, в которую входят физики из Швейцарской высшей технической школы Цюриха и ФИАНа. В этом институте есть современный ускоритель, в котором протоны разгоняются до высоких скоростей и бомбардируют мишень, в результате чего рождаются мюоны.

«Уникальность нашего измерения обусловлена тем, что мы работаем на довольно интенсивном пучке мюонов, причем холодных. Этот факт позволил нам как раз улучшить, измерить частоту этого перехода за счет того, что мы получали значительно больше мюонов, чем до этого или чем в каких-либо других лабораториях можно получить», — говорит Артём Головизин.

В своей работе ученые создавали пучок мюонов, который с помощью электромагнитных полей направлялся сквозь тонкую карбоновую фольгу толщиной 10 нанометров. Проходя через нее, некоторые мюоны захватывали электрон, образовывая таким образом мюоний. Он очень похож на атом водорода, только протон заменен на мюон. Примерно у 10 % мюониев электроны оказываются на подуровне 2S1/2. Именно такие атомы интересовали ученых.

Далее пучок направлялся через электромагнитное поле на частоте вблизи 580 МГц, что вызывало внутри мюония резонанс и переход 2S состояния в 2P — перескок из верхнего уровня на нижний уровень. Фиксируя этот переход, ученые измеряли резонансную частоту перехода, из чего в дальнейшем, используя вычисленные значения сверхтонких расщеплений 2S и 2P уровней (557,9 МГц и 186,1 МГц), пересчитывали значение лэмбовского сдвига, которое оказалось равным 1045,5 МГц.

Затем ученые измерили частоту перехода между подуровнями 2S1/2, F=0 и 2P1/2, F=1, где F — это номер сверхтонкого подуровня. Он оказался равен 580,6 МГц. Далее, взяв из предыдущей работы измерение частоты другого перехода между подуровнями 2S1/2, F=1 и 2P1/2, F=1, ученые по разнице частот этих двух переходов определили расщепление 2S уровня, равное 559,6 МГц.

«Мы прикладываем электромагнитное поле частотой вблизи 580 мегагерц. И когда мы прикладываем это поле, с какой-то вероятностью может произойти переход с верхнего уровня на нижний уровень. Если это произойдет, то нижний уровень очень быстро распадется в 1S состояние. Если этого не произойдет, то атом останется в 2S состоянии, и мы сможем его зарегистрировать. В зависимости от частоты прикладываемого радиочастотного поля, мы наблюдаем резонанс. Когда мы приближаемся к резонансу, мы видим, что часть атомов, которые летят в состоянии 2S, куда-то пропадает. И вот как раз из этих данных мы и можем определить резонансную частоту перехода», — поясняет Артём Головизин.

Так как протоны после разгона обладают высокой скоростью и энергией, то и мюоны имеют большую скорость. Однако чтобы эффективно производить мюоний, и тем более резонансно возбуждать переходы, нужно использовать медленные мюоны. Тогда больше шансов, что они захватят электрон и ученым удастся их измерить, иначе мюон может просто пролететь область возбуждения за очень короткое время, не захватив ни одного электрона. Поэтому ученые замедляют мюоны, чтобы сделать процесс захвата более эффективным. В эксперименте ученые тормозили мюоны с помощью неонового замедлителя, снижая их энергию с 28 мегаэлектронвольт до 20 электронвольт. Изначальная скорость мюонов составляет примерно четверть скорость света, а после замедления падает в 1000 раз.

Ученые надеются, что в будущем им удастся снизить статистическую погрешность, и тогда измерение 2S1/2, F=0 -2P1/2, F=1  перехода поможет точно рассчитать лэмбовский сдвиг, так как именно этот переход лучше подходит для точных измерений. Пока что ученые сделали первый шаг в этом направлении. Тогда, если обнаружится расхождение экспериментальных результатов с теоретическими расчетами и оно будет меньше погрешности измерений, это будет указывать на то, что ученые столкнулись с явлением, выходящим за пределы Стандартной модели.

«Мы пытаемся максимально точно измерить экспериментально это значение. И если не будет расхождения, то ничего интересного сказать не получится. Но если расхождение будет, это позволит что-то предполагать. Но чтобы понять, есть расхождение или нет, надо увеличивать точность измерений, потому что пока что ошибка измерений больше, чем возможное расхождение, которое есть между экспериментом и теорией», — говорит Артём Головизин.

Конечной целью ученых является определение массы мюона. Оно необходимо для более точных расчетов, так как предсказать массу теоретическим путем невозможно.

http://sci-dig.ru/physics/mjuonnyj-atom-i-novaya-fizika/

Подкатегории