СМИ о нас

02.06.23 02.06.2023 Телеграм-канал МУМЦФМ. О конкурсе «Все в курсе» рассказывает сопредседатель жюри Н.Н. Колачевский

Сопредседатель жюри Конкурса, директор Физического института им. П. Н. Лебедева РАН Колачевский Николай Николаевич

Конкурс «Все в курсе» – это яркая идея о создании нового, интересного, содержательного контента для межолимпиадной подготовки школьников и студентов. Мы ищем студентов, аспирантов, преподавателей вузов и специалистов, которые могут ответить на вопросы по финансовой безопасности. Не менее важно представить свои ответы в доступной и необычной форме — в формате коротких клипов, популярных в социальных сетях.

Конкурс предполагает большой простор для творчества в плане выбора тем – и про то, как не стать жертвой мошенников, и про то, как решить какие-то интересные задачи, сформировать успешные коллективы, прокачать навыки и софтскилс.

Поэтому мы приглашаем всех не стесняться доносить свои идеи для школьников и студентов и принять участие в конкурсе!
Успехов!


Напоминаем, что на сайте МУМЦФМ продолжается прием заявок на участие в конкурсе!

https://t.me/mumcfm/1053

09.08.23 31.07.2023 Телеграм-канал Журнал «Эксперт». В ФИАНе проверят эксперимент корейцев по созданию супер-сверхпроводника

В ФИАНе проверят эксперимент корейцев по созданию супер-сверхпроводника Сенсационный результат южнокорейских физиков из Центра исследований квантовой энергии - получение сверхпроводника, способного работать при комнатной температуре и нормальном атмосферном давлении, может оказаться фейком. Напомним, о создании свинцового апатита LK-99, предвестника технологической революции, корейцы заявили на сайте препринтов arXiv.org.

Проверить эксперимент планируют ученые Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга ФИАН. Именно здесь был получен рекордный из признанных в научном мире результатов в этой области - сверхпроводник-полигидрид с температурой сверхпроводящего перехода -20С.

Руководитель центра Владимир Пудалов и научный сотрудник Кирилл Перваков уже заявили, что к результатам корейских коллег даже при беглом прочтении возникают вопросы.

Во-первых, описанный состав не может быть синтезирован путем, указанным в статье. Предлагаемая формула идет в разрез с законом сохранения массы в пропорциях меди и фосфора. Во-вторых, фосфор в фосфиде меди имеет степень окисления 3-, а медь – 1+, тогда как в целевом соединении у фосфора степень окисления уже 5+, а у меди – 2+. То есть в процессе конечной термообработки эти элементы отдали электроны (окисление), а значит, должен быть элемент, который их примет (восстановление). Этим элементом могла быть сера, но на представленных фотографиях ампул не видно следов серы, которая имеет ярко-желтый цвет. И, в-третьих, описанная кристаллическая структура не типична для соединений высокотемпературной сверхпроводимости, для которых характерна тетрагональная или кубическая кристаллическая решетка.

Физики из Оксфордского университета в интервью New Scientist также выразили сомнения в убедительности доказательств представленной сверхпроводимости.

Более ранние сообщения о достижении сверрхпроводимости при нормальных условиях, в том числе опубликованные в Nature, не прошли проверку научным сообществом.

https://t.me/expert_ru_chat/30895

31.07.23 31.07.2023 ИА Красная Весна. Российские ученые усомнились в реальности прорывного открытия

Сомнения в реальности получения корейскими исследователями вещества, обладающего высокотемпературной сверхпроводимостью, высказал руководитель Центра высокотемпературной сверхпроводимости и квантовых материалов им. В. Л. Гинзбурга ФИАН Владимир Пудалов. Комментарий ученого опубликован 31 июля на официальном сайте РАН.

В опубликованной корейскими учеными статье утверждается, что полученное вещество имеет свойства сверхпроводника при температурах до 127°C и атмосферном давлении. Если эта информация подтвердится, то технология изменит мир.

Однако, ученый отметил, что даже «при беглом взгляде возникает несколько вопросов, требующих дальнейшего уточнения и проверки».

«Во-первых, это касается состава полученных образцов. Описанный состав <…> не может быть синтезирован путем, указанным в статье», так как описанный корейскими учеными способ получения вещества нарушает закон сохранения массы, — отметил Пудалов.

Кроме того, «описанная кристаллическая структура не является типичной для описанных соединений, для которых характерна тетрагональная или кубическая кристаллическая решетка», добавил ученый.

Пудалов добавил, что в последнее время в литературе неоднократно появлялись заявления об осуществлении сверхпроводимости при комнатной температуре и при нормальных условиях в различных материалах. Но все «эти сообщения после проверки научным сообществом, в том числе и нами, оказались недостоверными, а соответствующие статьи были изъяты из журналов или не приняты к публикации. Что касается новых появившихся препринтов статей, то мы проводим анализ этих результатов и планируем их экспериментальную и теоретическую проверку».

https://rossaprimavera.ru/news/7adb30d3

31.07.23 31.07.2023 Российская академия наук. Сотрудники ФИАН прокомментировали сенсационное сообщение о сверхпроводнике, работающем при комнатной температуре и атмосферном давлении

В опубликованной статье утверждается, что полученное корейскими исследователями вещество имеет свойства сверхпроводника при температурах до 127°C и атмосферном давлении. Если эта информация подтвердится, то технология изменит мир. Возможно.

Так, описанный в публикации сверхпроводник представляет собой свинцовый апатит или LK-99, а значит даже любители с необходимым оборудованием могут поэкспериментировать со сверхпроводником.

Все доказательства и объяснения указывают на то, что LK-99 – это первый сверхпроводник, работающий при комнатной температуре и атмосферном давлении. У LK-99 есть множество возможностей для различных применений, таких как магниты, моторы, кабели, поезда на магнитной подушке, электрические кабели, кубиты для квантового компьютера, THz антенны и т.д. Корейцы считают, что новая разработка станет новой исторической вехой, открывающей новую эру для человечества. Возможно.

Так ли это на самом деле, узнаем у специалистов Физического института им. П.Н. Лебедева Российской академии наук (ФИАН):

Статьи 2307.12037 и 2307.12008, выложенные на сайте Arxiv.org, согласно которым авторы наблюдали в допированном медью свинцовом апатите «сверхпроводимость» при атмосферном давлении и температуре около 400К, вызывает огромный интерес исследовательского сообщества. Однако, при беглом взгляде возникает несколько вопросов, требующих дальнейшего уточнения и проверки.

Во-первых, это касается состава полученных образцов. Описанный состав Pb10-xCux(PO4)6O (0,9<х<1,1) не может быть синтезирован путем, указанным в статье, так как апатит (сложный фосфат-оксид свинца Pb9(PO4)6·PbO) предлагают получить взаимодействием ланаркита (сложный сульфат-оксид свинца PbSO4·PbO) с фосфидом меди Cu3P, но, согласно составу, меди содержится около 1, а фосфора, соответственно, должно войти в состав около 1/3, а никак не 6. С законом сохранения массы сложно спорить.

Во-вторых, фосфор в фосфиде меди имеет степень окисления 3-, а медь – 1+, тогда как в целевом соединении у фосфора степень окисления уже 5+, а у меди – 2+. То есть в процессе конечной термообработки эти элементы отдали электроны (окисление), а значит, должен быть какой-то элемент, который их примет (восстановление). Этим элементом могла бы быть сера, но на представленных фотографиях ампул не видно следов серы, которая имеет ярко-желтый цвет.

И, в-третьих, описанная кристаллическая структура не является типичной для соединений ВТСП, для которых характерна тетрагональная или кубическая кристаллическая решетка.

Коллектив Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга ФИАН работает над созданием новых ВТСП материалов, имея главной целью создание сверхпроводников работоспособных при комнатной температуре. В кооперации с коллегами из других институтов нами открыты и исследованы сверхпроводники-полигидриды, с критической температурой сверхпроводящего перехода -20С. Эти результаты являются на сегодняшний день рекордными среди всех достоверных результатов, воспроизведенных и проверенных в других лабораториях мира. Их недостатком является необходимость приложения сверхвысокого давления для синтеза материала и осуществления сверхпроводимости.

В последнее время в литературе неоднократно появлялись заявления об осуществлении сверхпроводимости при комнатной температуре и при нормальных условиях: в “науглероженном гидриде серы”, в графите с линейными цепочками дефектов, и т.п. Эти сообщения (после проверки научным сообществом, в том числе и нами) оказались недостоверными, а соответствующие статьи были изъяты из журналов или не приняты к публикации.

Что касается новых появившихся препринтов статей, то мы проводим анализ этих результатов и планируем их экспериментальную и теоретическую проверку.

Прокомментировали новость Владимир Пудалов, доктор физ.-мат. наук, член-корреспондент РАН, руководитель Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга ФИАН, и Кирилл Перваков, научный сотрудник ЦВСиКМ им. В.Л. Гинзбурга ФИАН.

https://new.ras.ru/activities/news/sotrudniki-fian-prokommentirovali-sensatsionno-soobshchenie-o-sverkhprovodnike-rabotayushchem-pri-ko/

28.07.23 28.07.2023 Газета.Ru. Корейцы создали сверхпроводник, который изменит мир. Что с ним не так?

В QSERF создали сверхпроводник, работающий при комнатной температуре и давлении



Сверхпроводящие катушки аппарата МРТ
DirectMed Parts & Service

Корейские ученые заявили о небывалом научном прорыве. Им якобы удалось получить сверхпроводник, способный работать при комнатной температуре и нормальном атмосферном давлении. Это предел мечтаний физиков, который сулит революцию в электротехнике. Однако многие коллеги-исследователи восприняли открытие скептически. «Газета.Ru» поговорила с российскими учеными о подозрительных свойствах нового материала и о том, почему описанное корейцами уравнение реакции абсурдно с химической точки зрения.
 

Абсолютно эффективный провод

Сверхпроводящие материалы обладают нулевым электрическим сопротивлением и потому способны пропускать через себя ток без потерь. Именно сопротивление заставляет электроприборы греться, а лампы накаливания — светиться и перегорать. Изначально считалось, что добиться нулевого сопротивления можно лишь при температуре жидкого гелия, но к началу XXI века рабочую температуру серийных сверхпроводников удалось поднять до температуры кипения жидкого азота (-196 °C).

Некоторые материалы сохраняют сверхпроводящее состояние при нагреве до -20 °C, но при этом требуют давления в миллионы атмосфер. Криогенное оборудование, как и устройства для поддержания высокого давления, стоит дорого и занимает много места. Поэтому сверхпроводники используют лишь там, где нельзя обойтись обычной медью: например, в мощных магнитах аппаратов МРТ или в ускорителях элементарных частиц.

Материал, описанный корейскими учеными под руководством Ли Сукбэ из Центра исследований квантовой энергии (QSERF), сохраняет свойства сверхпроводника при нормальном атмосферном давлении и температуре 125 °C. Это означает, что его можно использовать как обычный провод без холодильных установок. В первой статье описан метод получения сверхпроводника — сложного соединения оксида и фосфата свинца, которое описывается химической формулой Pb10-xCux(PO4)6O. Изготовить новый материал очень просто, а в качестве сырья используются дешевые материалы: оксид свинца, сульфат свинца, медь и фосфор. Во второй статье ученые описывают обычный для физиков трюк: как созданные ими из нового материала сверхпроводящие магниты левитируют.

Создать способный работать в нормальных условиях сверхпроводник — это конечная цель целого направления физики, а влияние подобного провода на жизнь можно сравнить с гипотетической универсальной вакциной от рака. Например, сверхпроводящие ЛЭП способны передавать ток на любое расстояние без потерь, которые в современных сетях измеряются десятками процентов. Сверхпроводящие электродвигатели и генераторы намного меньше в размерах, чем такие же по мощности, но из меди.

Летающим поездам на магнитной подушке (маглевам) также требуются мощные сверхпроводящие магниты. Если они избавятся от охладителей, маглев-линии станут гораздо дешевле и проще. Тоже самое касается аппаратов МРТ — мобильные томографы без сверхпроводниковых компонентов по размерам похожи на тумбочку и намного дешевле полноразмерных, но не позволяют получить качественное изображение. Удобный и дешевый сверхпроводящий магнит требуется и исследователям элементарных частиц — для постройки мощных ускорителей вроде Большого адронного коллайдера.

Ошибочное уравнение и другие аномалии

Препринт статей Ли Сукбэ и его коллег пока не прошел рецензирование ни в одном научном журнале и был выложен в открытый доступ на arXiv.org. До этой публикации авторы не были известны в научном мире, что смутило многих коллег-ученых — эпохальное открытие появилось из ниоткуда и в соавторах нет ни одного профессора.

Открытием корейских ученых заинтересовались в Физическом институте имени П.Н. Лебедева РАН (ФИАН). Российские физики восприняли препринт с большим скепсисом — по их мнению, он полон странностей и несостыковок.

Например, подозрительно, по их мнению, выглядит график вольт-амперных характеристик. У каждого сверхпроводника есть предельная сила тока, выражаемая в амперах. Когда она выходит за предельные значения, в материале возникает сопротивление. Это происходит постепенно — чем сильнее ток, тем большее сопротивление приобретает проводник.

«На рисунке 6а видно, что переход слишком резкий, и материал утрачивает свойства сверхпроводника скачком, а не плавно. Я видел вольт-амперные характеристики множества сверхпроводников, и столь резких скачков у них не бывает, график должен плавно идти вверх. При этом никакого объяснения этому явлению в статье нет», — рассказал «Газете.Ru» Кирилл Перваков, научный сотрудник Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга ФИАН.

Куда более серьезные претензии у российских специалистов к описанию химической реакции. В статье указано, что сульфат-оксид свинца PbSO4·PbO реагирует с фосфидом меди Cu3P. Мелкие цифры означают количество атомов вещества, и видно, что меди в три раза больше, чем фосфора. «X» в исходной указанной форме примерно равен 1, то есть, для простоты восприятия ее можно записать как (Pb10-1Cu1(PO4)6O. Получается, что в этом соединении фосфора в 6 раз больше, чем меди. Это противоречит закону сохранения вещества — в ходе реакции обязаны сохраняться исходные пропорции атомов разных веществ. Ошибка была также найдена в электронном балансе реакции.

«Либо они используют другие исходные компоненты, либо сверхпроводящий материал имеет другой состав, отличный от написанного. Может быть, они неверно описали реально существующую реакцию, но что мы в таком случае обсуждаем, и можно ли назвать это научной статьей?» — пояснил Перваков.

Наконец, высокотемпературные сверхпроводники как правило имеют тетрагональную или кубическую кристаллическая решетку, в то время как созданный корейцами материал — гексагональную.

В институте попробуют повторить опыт Ли Сукбэ и его коллег, причем двумя путями. Российские ученые считают описанную химическую реакцию абсурдной. Поэтому в одном эксперименте они возьмут те же исходные компоненты и проведут синтез по описанному методу, а в другом — получат заявленный материал из подходящего для этого сырья, для чего реакцию придется сильно модифицировать. После этого физики попробуют выяснить про каждый из двух материалов, действительно ли его сопротивление равно нулю. Реакция занимает не один день, так что первые результаты будут готовы к середине следующей недели

https://www.gazeta.ru/science/2023/07/28/17338184.shtml

20.07.23 17.07.2023 Атомная Энергия 2.0. В России появился 16-кубитный квантовый компьютер на ионах
Laser Physics
 

 

20.07.23 16.07.2023 Благоварские вести. Президент принял участие в пленарном заседании Форума будущих технологий «Вычисления и связь. Квантовый мир»
Форум открывает серию ежегодных встреч, посвящённых инновационным практикам технологического развития страны. Мероприятие объединило учёных из ведущих университетов и исследовательских центров мира, экспертов и представителей бизнес-сообщества. Центральное событие – пленарное заседание – посвящено обсуждению приоритетных задач в развитии технологий вычисления и передачи данных, их потенциала для роста экономики и повышения качества жизни людей.
 
 
Президент принял участие в пленарном заседании Форума будущих технологий «Вычисления и связь. Квантовый мир».

 

Президент принял участие в пленарном заседании Форума будущих технологий «Вычисления и связь. Квантовый мир».

Р.Юнусов: Добрый день, Владимир Владимирович!

Добрый день, уважаемые коллеги!

Прежде чем мы объявим начало нашей дискуссии, я бы хотел представить Вам, Владимир Владимирович, вам, коллеги, участников нашей сегодняшней дискуссии. Я пойду, наверное, слева направо.

Рядом со мной находится Алексей Фёдоров, который возглавляет научную группу в Российском квантовом центре и является самым молодым профессором в истории МФТИ.

Алексей Евгеньевич Лихачёв, глава госкорпорации «Росатом», с нами.

Илья Семериков – тот самый Илья, который построил компьютер, который, Владимир Владимирович, мы Вам показывали – на кубитах, 16-кубитный квантовый компьютер. Илья возглавляет субгруппу в Российском квантовом центре и является сотрудником Физического института Академии наук.

С нами также Надежда Борщевская, которая работает в лаборатории оптики Центра квантовых технологий Московского государственного университета.

Олег Валентинович Белозёров – глава «Российских железных дорог».

И Владимир Егоров, который является заместителем директора Национального центра квантового интернета ИТМО.

Владимир Владимирович, у нас сейчас было время обмолвиться парой слов с учёными, и Вы сказали: вы знаете, ведь счастье – в творчестве. А мы, когда готовились к сессии, обсуждали, как ни странно, тот же самый сигнал, ту же самую идею, что мы – как научное сообщество – живём в такое время, в котором мы очень счастливые ребята. Потому что у нас происходит столько всего, что мы творчески проживаем такой путь – за десять лет мы прошли то, что людям, бывает, за всю жизнь не достаётся такого.

Я помню, десять лет назад, когда мы с Алексеем Фёдоровым, который был студентом 4-го курса Бауманки, ходили и рассказывали, что такое квантовый компьютер, нам говорили: это всё фантастика, мы вообще не верим. А сейчас, когда мы рассказываем – [звучат вопросы]: ну что, когда там 100 кубит будет? Алексей Евгеньевич говорит: когда вы нам всё уже сделаете в российской атомной промышленности? И так далее.

Очень большой путь пройден. И действительно, мы сегодня будем говорить про технологии, но мы будем говорить и про людей, про то, как они проживали эти годы и как мы пришли к такому событию. Десять лет назад такой форум и представить было невозможно – что государство на таком уровне будет уделять внимание квантовым технологиям.

Прежде чем мы перейдём к дискуссии, если позволите, Владимир Владимирович, я бы предложил Вам выступить с речью.

Пожалуйста.

В.Путин: Большое спасибо.

Не думаю, что это будет фундаментальная речь, поскольку предмет-то, обсуждаемый вами, очень специальный. Тем не менее, разумеется, рад приветствовать всех российских и зарубежных учёных, инженеров, представителей бизнеса, всех участников Форума будущих технологий.

Ведущий наш сказал, что трудно было десять лет назад представить, что такой форум мог состояться. Ну почему? Мы как раз и стремились к тому, чтобы не только такие форумы состоялись, но стремились к тому, чтобы исследования проводились, чтобы они проводились в том числе молодыми исследователями, чтобы мы выходили на нужные нам параметры и результаты. То, что мы добиваемся своих целей, это, мне кажется, очень важно, – что мы ставим перед собой выполнимые задачи, нужные для нашей страны, идём к ним уверенно и добиваемся, как я уже сказал, результатов.

Рассчитываем, что и сегодняшняя наша встреча станет традиционной, а она уже становится традиционной, для обсуждения перспективных направлений, которые уже в горизонте текущего, в начале следующего десятилетия будут всё больше и больше набирать силу. Во многом всё это станет определять облик национальных экономик, да и карту мира в целом.

Конечно, не буду говорить сегодня о сугубо научных вещах – это дело тех, кто здесь сидит со мной рядом, во всяком случае некоторых коллег, и тех, кто в зале находится: лучше вас, лучше специалистов этого никто не знает. Но при этом посчитал важным рассказать о том, как мы строим нашу работу на государственном уровне, как мы выстраиваем международное научное и технологическое сотрудничество в условиях фактической блокады, объявленной России властями и правящими элитами, скорее всего правящими элитами, некоторых стран.

Мы действительно столкнулись с давлением, с попытками через ограничение доступа к технологиям заставить нас отказаться от суверенитета, от права самим выбирать свой собственный исторический путь. Наши оппоненты рассчитывали, что мы отступимся, сдадимся, но так не будет, как мы часто говорим в таких случаях. Россия будет идти только вперёд, причём своим собственным путём, не изолируясь ни от кого в то же самое время.

На внешние вызовы мы отвечаем только усилением качества и эффективности работы, распространением свободы. Так это, кстати, произошло и в 2014 году, – уже говорил об этом, да и все об этом хорошо знают, – когда первая волна внешних санкций стала стимулом для бурного развития некоторых наших направлений, в том числе сельского хозяйства.

Сегодня аналогичные позитивные процессы набирают силу в промышленности и в технологической сфере. При этом мы понимаем, что в текущих условиях главное для опережающего развития – сосредоточить усилия на приоритетных задачах.

Во-первых, на тех направлениях, где мы уже обладаем технологиями и продуктами глобального уровня, например в атомной энергетике, в искусственном интеллекте и во многих других сферах.

Во-вторых, на тех областях, которые являются критическими для развития страны и где мы в обязательном порядке должны – именно должны – обладать собственными компетенциями. При этом у нас должны быть не просто научные разработки и базовые решения, а вся технологическая и производственная цепочка: собственное оборудование, элементная база, программное обеспечение и, конечно, люди, кадры.

Безусловно, решая задачи технологического суверенитета, мы не собираемся замыкаться, как я уже сказал в самом начале, замыкаться в себе. Напротив, намерены создавать и расширять равноправные, взаимовыгодные технологические и научные альянсы с другими государствами.

Отмечу, что в рамках российского председательства в БРИКС в следующем году будем обсуждать с нашими партнёрами такие конкретные проекты в целом ряде значимых сфер. В том числе речь идёт о передовых технологиях вычислений, обработки, хранения и передачи данных. Остановлюсь на этой теме поподробнее, если позволите, тем более что именно данный вопрос – в центре внимания Форума будущих технологий в этом году.

Наша принципиальная задача – перевести всю экономику, социальную сферу, органы власти, работу органов власти на качественно новые принципы работы, внедрить управление на новых данных – на основе больших данных. Эффект, как мы рассчитываем, будет в полном смысле комплексным, мультипликативным. Это кратное повышение качества управления и производительности труда, рабочие места с передовыми компетенциями и высокими заработными платами, доступность услуг, сервисов, принципиально иные возможности для наших граждан, для человека.

Так, цифровые платформы позволят развивать умные города и беспилотные системы, использовать «цифровые двойники» технических систем и процессов их производства, начать широкое применение точного земледелия в сельском хозяйстве, выйти на новый уровень в логистике и энергетике, в развитии телемедицины и онлайн-образования, в предоставлении госуслуг и осуществлении финансовых расчётов. В целом платформенные решения откроют дорогу к тому, чтобы полномасштабно автоматизировать не только технологические процессы, но и взаимоотношения между участниками рынка.

Для таких изменений всё, что связанно с данными, большими данными, принимает критически важное значение. Речь, по сути, идёт о системообразующей инфраструктуре для нашего дальнейшего развития, для будущего нашей экономики в целом. И очевидно, что зависимость в этой сфере означает серьёзные угрозы для национальной безопасности, ослабление, а то и утрату суверенитета страны. Мы должны, безусловно, думать над этим и смотреть в будущее.

Будем говорить прямо: именно к этому стремились некоторые страны, когда любыми путями пытались в буквальном смысле подсадить нашу страну на зарубежные технологические платформы и стандарты, и надо признать: не без успеха. Понятно, что взаимозависимость неизбежна. Понятно, что взаимозависимость – это объективная вещь. Но всё-таки между общими словами об открытости и собственной рубашкой, которая ближе к телу, разница есть, и мы на практике часто эту разницу видим.

Многие критические технологии в этой сфере мы покупали, что называется, в чужом магазине, в своего рода супермаркете готовых, кем-то произведённых решений. А в какой-то момент перед нами просто плотно затворили дверь и повесили вывеску «Закрыто».

Мы извлекли уроки, сделали необходимые выводы. Правительством, государственными и частными компаниями уже немало сделано, чтобы изменить положение дел, но нужно, безусловно, нужно идти дальше: решать более сложные, системные задачи, планировать эту работу вдолгую.

Предлагаю в течение года подготовить новый национальный проект на период до 2030 года, а именно нацпроект по формированию экономики данных. Подчеркну: речь не только о том, чтобы консолидировать существующие инструменты поддержки развития цифровой экономики, искусственного интеллекта и высокотехнологичных проектов, включая «дорожные карты» по развитию квантовых технологий, о которых вы говорите сегодня и которые сегодня компании с госучастием пытаются осуществить на практике – разработки в этой сфере осуществить на практике.

Нужно выстроить именно целостный механизм создания и повсеместного внедрения передовых разработок. Это на самом деле касается всех технологий и сфер жизни, безусловно. Мы много об этом говорим, постепенно двигаемся, решаем эти вопросы. Но нужно максимально форсировать такую работу, в том числе и по такому направлению, как формирование экономики данных, о которой уже сказал.

Здесь значимо всё: это исследования, подготовка кадров на всех уровнях образования, формирование условий для выпуска и тестирования пилотных образцов продукции, спрос на отечественные продукты и сервисы в области вычислений и работы с данными, а также гибкое регулирование и поддержка производства.

При этом принципиально важно системно смотреть на следующий технологический уклад, создавать отрасли и рынки будущего. Именно в такой логике построен нацпроект по развитию беспилотных авиационных систем. Как мы и договаривались с коллегами, прошу утвердить его до 1 сентября 2023 года, а также учесть это приоритетное направление при формировании бюджета на 2024-й и плановый период до 2026 года.

Уважаемые коллеги, новый национальный проект по формированию экономики данных должен коснуться всех этапов и уровней работы.

Первое – это сбор данных. Имею в виду в том числе высокочувствительные датчики, включая квантовые сенсоры, которые радикально повышают точность позиционирования объектов, позволяют обнаруживать заболевания на самых ранних стадиях, применяются в других передовых областях, например в системах спутниковой и наземной связи.

Второе – это передача данных, развитие систем связи. Причём не только текущего, но и последующих поколений, которые, по прогнозам, смогут передавать информацию в режиме реального времени, что критически необходимо для развития робототехники, систем беспилотного транспорта и автоматизации городской среды.

Третье – это суверенная инфраструктура для вычислений и хранения данных внутри страны. Речь прежде всего об отечественных облачных платформах и центрах обработки данных, которые смогут эффективно поддерживать работу государственных органов, предприятий, операторов связи, а также вычислительные мощности собственного производства, в том числе на качественно новых принципах. Имею в виду компьютеры, о чём мы сейчас говорили с коллегами и что мне показывали, с использованием квантовых и фотонных технологий, о которых мы ещё поговорим.

Четвёртое – это безопасность данных. Безусловно, этот аспект мы в полной мере должны учитывать, иметь в виду. В том числе считаю необходимым продолжить работу над технологиями квантовых коммуникаций и квантового шифрования. Такие технологии обеспечивают устойчивость информационных систем к кибератакам с применением как классических, так и квантовых компьютеров, позволяют создать неуязвимые для взлома системы, а также развивать защищённую квантовую связь. Кстати, по этому направлению Россия в числе лидеров. Конечно, и в этой сфере мы пока делаем только первые шаги, – сейчас коллеги тоже об этом рассказывали, – но всё-таки это уже ощутимый, осязаемый результат.

Пятое – это суверенные и национальные стандарты и протоколы работы с данными. Такие стандарты необходимы для надёжной обработки и хранения данных, в том числе персональной информации граждан, для применения технологий квантовой криптографии, для кибербезопасности, защиты от атак.

Шестое – это алгоритмы обработки и анализа данных, включая решения в области искусственного интеллекта, а также отечественное программное обеспечение. Наличие таких национальных инструментов гарантирует суверенность данных, существенно уменьшает зависимость от иностранных поставщиков и повысит контроль над критической инфраструктурой.

И, безусловно, необходимы так называемые хранилища кода – отечественные платформы и сервисы, которые нужны для совместной работы программистов не только из России, но и из других государств мира. Подчеркну, работа по всем перечисленным направлениям должна быть нацелена на системное изменение всех отраслей экономики, социальной сферы, государственного управления, качества жизни людей на всей территории нашей страны.

Уважаемые коллеги!

Сейчас хотел бы предметно обратиться к квантовым технологиям, которые являются основной темой сегодняшней дискуссии. Сейчас только и на выставке, в беседе с представителями науки меня пробовали посвящать в это более детально. Нам с вами нужно не только решать текущие задачи, но и обязательно смотреть вперёд – за горизонт, постараться расширить возможности человека, управлять мельчайшими объектами, поставить на службу прогрессу сложнейшие физические процессы.

Квантовый мир не торопится открывать все свои тайны, но отечественные исследователи готовы решать сложнейшие научные задачи, открывать путь к созданию передовых решений. И это стремление, безусловно, – сейчас ещё раз повторю, мы только что говорили об этом, – мы будем поддерживать.

Прошу в рамках национального проекта по формированию экономики данных определить меры поддержки фундаментальных исследований, включая увеличение объёмов финансирования.

Причём имею в виду научный поиск по широкому спектру вычислительных технологий, многие из которых, вы это прекрасно знаете, работают на принципах квантовой физики и механики, связаны с достижениями и первой, и развивающейся на наших глазах второй квантовой революции, – о чём мне сейчас только наш ведущий рассказывал на выставке, – второй революции, которая стала стимулом в том числе для создания технологий квантовых вычислений и квантовых компьютеров.

Однако, по всем прогнозам, перспективные вычислительные системы будут представлять из себя как раз гибридные решения, в которых присутствует и так называемое квантовое ядро, и ставшие уже классическими технологии микроэлектроники.

Отмечу, что каждые десять лет производительность компьютеров увеличивается примерно в тысячу раз. Интегральные схемы сегодня уже содержат десятки миллиардов транзисторов. Гонка здесь идёт на запредельных скоростях.

Так, новый суперкомпьютер Сбера – Christofari Neo – способен производить порядка 12 тысяч триллионов операций в секунду, а суперкомпьютер «Яндекса» – «Червоненкис» – почти вдвое мощнее. Знаю, что это не первые места в мире, но, в принципе, места уже достаточно заметные, и к этому можно относиться с уважением: есть перспектива развития.

При этом потребности в вычислительных ресурсах продолжают расти, и наши собственные суверенные решения в этой сфере критически необходимы для развития систем искусственного интеллекта, для создания больших нейросетевых моделей. Именно поэтому для нас так важно раскрутить отечественную микроэлектронную промышленность. Для этого предметно занимаемся развитием серийных производств по выпуску особо чистых материалов и технологических сред.

Многие знают, что в Зеленограде у нас создаётся новый научно-технологический центр, реализуются проекты по технологическому оборудованию, в том числе с участием партнёров из Белоруссии. Напомню в этой связи, что именно высокий уровень кооперации в советское время обеспечил условия для подготовки инженерных кадров для разработки уникальных технологий для развития выдающихся научных школ, в том числе в области фотоники. Благодаря сильным фундаментальным заделам сегодня фотонные интегральные схемы – это уже полноценная рабочая технология.

В Москве развивается межотраслевой кластер в области фотоники, на базе которого научные центры, стартапы, бизнес, университеты вместе работают над созданием новых решений и запускают их в производство. Такие же площадки для экспериментов с технологиями будущего – для их тестирования и практического внедрения – нужно создавать и по другим передовым направлениям, нужно работать по другим направлениям.

Знаю, что правительство столицы, – Сергей Семёнович [Собянин] здесь находится, в зале, мы с ним тоже неоднократно говорили на эту тему, – правительство столицы приступило к работе по созданию московского квантового кластера. Просил бы Вас, уважаемый Сергей Семёнович, сегодня подробно об этом тоже рассказать. Ну, если не подробно, то хотя бы в общих чертах.

Уважаемые коллеги!

Не раз встречался и с российскими учёными, и с нашими соотечественниками, которые трудятся в зарубежных университетах и исследовательских центрах – вот в очередной раз совсем недавно. Многие хотят работать в России, участвовать в интересных и значимых исследовательских проектах, в том числе ставят вопрос о возобновлении нашей программы мегагрантов, которые как раз и позволяют собирать сильные исследовательские команды, решать интересные научные задачи.

Данное предложение полностью поддерживается. Прошу Правительство и Госдуму обязательно предусмотреть в федеральном бюджете на плановый период до 2026 года необходимое финансирование программы мегагрантов, а также внести изменения в параметры программы, с тем чтобы её условия стали ещё более привлекательными для исследователей.

Считаю необходимым повысить максимальный размер мегагрантов, увеличить, что очень важно, и коллеги об этом говорили недавно со мной, сроки их реализации, скажем, до пяти лет, – некоторые говорят, хорошо бы и десять, – до пяти лет с возможностью продления до трёх. Это уже будет почти десять.

Прежде всего нужно поддержать крупные научные проекты наших соотечественников и ведущих зарубежных исследователей, в том числе тех, кто уже участвовал в создании в России лабораторий мирового уровня. За пять лет учёный в общей сложности должен получить на свой проект полмиллиарда рублей, при том условии, если он готов работать в нашей стране на постоянной основе.

Поддержка в объёме четверти миллиарда рублей за пять лет будет оказана ведущим зарубежным учёным, которые приедут в Россию, создадут в наших вузах кафедры, будут заниматься преподавательской деятельностью, работать со студентами и аспирантами. Здесь, собственно, это мало чем отличается от прежних условий, но мы их подтвердим и немножко расширим. В результате такие наши коллеги из-за рубежа сформируют научные школы по ключевым, приоритетным направлениям развития науки и технологий.

Наконец, ещё одно принципиально новое направление. В рамках обновлённой программы мегагрантов окажем содействие перспективным молодым исследователям, в том числе нашим соотечественникам, которые хотят вернуться на Родину и внести значимый вклад в научно-технологические решения, а таких немало.

Подчеркну, обновлённая программа мегагрантов должна быть запущена в короткие сроки. Мы будем рады видеть в нашей стране исследователей, которые разделяют принцип открытости науки, посвящают свою жизнь научному поиску, занимаются проектами будущего. А мы со своей стороны сделаем всё необходимое, чтобы разработки завтрашнего дня уже сегодня, сейчас стали глобально конкурентными продуктами.

Хотел бы поблагодарить всех, кто участвует в большой совместной работе по этому направлению. «Росконгресс» в частности – за организацию нашего форума. Российский квантовый центр, госкомпании «Росатом» и РЖД, руководители которых здесь представлены, инновационные предприятия, ведущие исследовательские институты и университеты – за научные и технологические прорывы, за постоянное стремление идти вперёд.

Отдельные слова благодарности – Российской академии наук за глубокую научную оценку исследовательских, технологических проектов. Прошу вас, уважаемые коллеги, расширять не только экспертное, но и научно-методическое сопровождение наших национальных программ развития. Добавлю, что в текущем году Российской академии наук исполняется 300 лет, и на современном этапе своего развития Российская академия наук объединяет учёных, бизнес в решении задач научного и технологического суверенитета нашей страны.

Рассчитываю, что именно в таком самом тесном взаимодействии будет идти подготовка к следующему форуму, который в будущем году будет посвящён развитию нейрокогнитивных, биомедицинских технологий.

Благодарю вас за внимание.

Р.Юнусов: Спасибо большое, Владимир Владимирович!

Очень основательный доклад, речь. Будем работать над этим.

Можно провести пару параллелей, которые возникают, слушая Вас, слушая речь, в том числе и про людей, и про табличку «Закрыто». Мы действительно это почувствовали, Владимир Владимирович, когда нам закрыли очень много дверей.

Но это же вызов! Мы работаем, мы Вам показывали, что пытаемся сделать. Дух у нас – на хорошем уровне. Но когда мы обсуждаем эти вещи, мы часто приходим к вопросу: «А кто мы есть вообще?» – к вопросу символов нового времени.

Но, прежде чем [говорить] про новое, я бы хотел сказать: в 1937 году Мухиной была представлена композиция «Рабочий и колхозница». Это были символы того времени – 1937 года.

В.Путин: Хорошо, Вы вспомнили именно об этом, а не о чём-то другом из 1937 года.

Р.Юнусов: Мы позитивные, у нас позитивный форум.

А в 1960-е годы, когда учёным уже удалось укротить энергию атома, возникло даже такое выражение: «физики и лирики». И роль физиков была неприкасаемая, она была действительно мощной: физики часто спасали других людей в это время, защищали их. Потом, конечно, 90-е годы тяжёлые для науки были. В последние 20 лет мы видим очень большие изменения.

И мы задаём себе вопрос, сейчас обсуждая эти все вызовы с коллегами: а разве мы, исследователи, не герои нового времени? Конечно, мы здесь не пытаемся занять весь пьедестал – это точно, мы уважаем многие другие профессии.

Как Вы думаете, роль исследователя достойна быть ролью героев нашего времени?

В.Путин: Знаете, исследователь всегда идёт впереди, он пионер в известном смысле, он фанат своего дела. И только фанаты добиваются успеха. Это первое.

Второе соображение заключается в том, что каждое время требует своих героев – и в 60-е годы, а началось это, конечно, чуть раньше. Если уж вспомнить 1937 год, это началось с Лаврентия Павловича Берии, который возглавлял атомный проект, имел отношение отчасти и к ракетному проекту – всё оттуда началось. Время требовало результатов именно в этой сфере – и люди, работающие в этой сфере, безусловно, становились героями общественного сознания.

Сейчас другие времена, другие приоритеты, и их несложно протестировать. Самые последние исследования ВЦИОМа, по-моему, были буквально пару недель назад, несколько недель назад сделаны, самая популярная профессия среди молодёжи – айтишник (31 процент), на втором месте – доктор, медик (30 процентов), на третьем месте – военнослужащий, защитник Отечества, и так дальше. Но в разы – хочу подчеркнуть – в разы увеличился интерес молодых людей к инженерным профессиям, по-моему, чуть ли не в пять раз.

Это всё-таки говорит о том, что, несмотря на то что некоторые вещи как бы в поле зрения людей находятся, сейчас не буду давать характеристики по каждому из этих направлений, но то, что растёт кратно интерес к инженерным профессиям, – это всё-таки признак нашего времени.

А что касается исследователей, то я ещё раз хочу повторить: они впереди, они пионеры. И, – вы знаете это лучше, чем я, – многие, очень многие лауреаты нобелевских премий получают эти премии через десятилетия после открытий, которые они сделали. Но они же делали и не думали о тех наградах – они просто шли вперёд. Всегда нужно низко склонять голову в знак уважения перед людьми такого рода и такого склада характера.

Р.Юнусов: Спасибо большое.

Я бы сейчас перешёл к фанатам. У нас Илья Семериков даже среди нашего сообщества исследователей выглядит явно фанатичным человеком, что иногда пугает, но чаще всего суперрадует.

Илья, поделись своим опытом, расскажи, что ты хотел донести нам.

И.Семериков: Действительно, фанатизм – это про меня, к счастью или к сожалению. Вообще сейчас на самом деле почти на каждом шагу своей жизни я задаю себе вопрос: это приблизит нас к созданию полезного квантового компьютера или нет? Если да, то других вопросов мне задавать себе не нужно. Всё, значит, мы это делаем.

http://www.kremlin.ru/events/president/news/71666

https://blvesti.ru/news/novosti/2023-07-16/prezident-prinyal-uchastie-v-plenarnom-zasedanii-foruma-buduschih-tehnologiy-vychisleniya-i-svyaz-kvantovyy-mir-3341766

20.07.23 15.07.2023 Страна Росатом. «Росатом» представил Владимиру Путину самый мощный в России квантовый компьютер

На Форуме будущих технологий, проходившем в Москве 9–14 июля, глава «Росатома» Алексей Лихачев и советник гендиректора «Росатома» Руслан Юнусов продемонстрировали президенту Владимиру Путину 16‑кубитный квантовый компьютер на ионах (на фото). С помощью облачной платформы на нем был запущен алгоритм расчета простой молекулы.

Процессор разработала команда ученых Физического института им. Лебедева РАН (ФИАН) и Российского квантового центра при координации «Росатома» в рамках правительственной дорожной карты «Квантовые вычисления», за реализацию которой отвечает госкорпорация.

Как рассказал на пленарной сессии научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАНа Илья Семериков, разработка началась в 2015 году с создания ловушек и попыток удержать в них ионы. Затем сделали суперточные квантовые часы для ГЛОНАСС, а после перешли непосредственно к дорожной карте. «Была большая дискуссия, включать ли в нее нашу ионную платформу. И я благодарен «Росатому», который в нас тогда поверил», — ​подчеркнул Илья Семериков. С тех пор они с коллегами три года практически живут в лаборатории. «Наш квантовый компьютер, что важно, уже делает полезные вещи — ​моделирует молекулы, а не занимается научной абстракцией», — ​сказал Илья Семериков. Мечта коллектива — ​создать квантовый процессор, который решает задачи быстрее, чем суперкомпьютер, и пригодится широкому кругу людей. У ФИАНа есть ряд идей, но на их реализацию потребуется не менее 10 лет. «Главное, чтобы участники не вышли на пенсию», — ​пошутил Владимир Путин, комментируя планы ученого.

«Мы уникально построили дорожную карту — ​не как механизм управления, а как механизм взаимодействия, взаимной поддержки и, не побоюсь этого слова, доверия», — ​прокомментировал подход к организации работы Алексей Лихачев.

Задачами «Росатома» он видит включение появляющихся квантовых технологий, «еще не умеющих ни ходить, ни говорить», в атомную отрасль и скорейшую их индустриализацию, а также помощь ученым с компонентной базой и оборудованием. На нынешнем этапе развития квантовой отрасли, считает Алексей Лихачев, Россия уже может предложить сотрудничество на равных ученым других стран.

На пленарной сессии форума Владимир Путин заявил, что принципиальная задача — ​перевести всю российскую экономику, социальную сферу и органы власти на качественно новые принципы работы — ​на основе больших данных. В результате должно кратно вырасти качество управления и производительности труда, доступность услуг. Президент предложил в течение года подготовить новый нацпроект по формированию экономики данных на период до 2030 года. Он предполагает не только консолидацию мер поддержки технологий, в том числе квантовых, но и выстраивание целостного механизма создания и внедрения передовых разработок. Нацпроект будет охватывать исследования, подготовку кадров, формирование условий для выпуска и тестирования образцов, организацию спроса, гибкое регулирование и поддержку производства, а также технологии сбора, передачи, хранения, обеспечения безопасности данных, национальные стандарты и алгоритмы хранения и обработки информации, создание хранилища кодов. В рамках нацпроекта будут расширены меры поддержки фундаментальных исследований, в том числе увеличено финансирование широкого спектра технологий, многие из которых работают на принципах квантовой физики и механики. Также будет возобновлена и расширена программа мегагрантов для исследователей.

Мэрия Москвы, «Росатом» и Российский квантовый центр подписали соглашение о строительстве лабораторно-­промышленного центра — ​нового корпуса в «Сколкове». «Там будут создаваться технологии, стартапы, лаборатории, образцы продукции. Наши задачи — ​обеспечить инфраструктуру, помочь сконцентрироваться на этих площадках разрозненным сегодня предприятиям и подыскать для их продукции покупателей», — ​сообщил мэр Москвы Сергей Собянин.

ОБЪЕДИНИЛИ ИНТЕЛЛЕКТЫ

«Атомдата-Интеграция» (входит в электроэнергетический дивизион «Росатома») и Ресурсный центр универсального дизайна и реабилитационных технологий (входит в контур управления Минпромторга РФ) заключили соглашение о намерениях по развитию решений в области искусственного интеллекта. Документ подписан в рамках Международной промышленной выставки «Иннопром‑2023», проходившей в Екатеринбурге 10–13 июля.

«Наши решения на основе технологий искусственного интеллекта широко применяются в отрасли как для управления качеством изделия и прогнозирования технического состояния оборудования, так и для интеллектуальной проверки научно-технической документации, — ​отметил директор по информационным технологиям «Росатома» Евгений Абакумов. — ​Новым вызовом для нас является имплементация искусственного интеллекта в критическую инфраструктуру, и сегодняшнее соглашение — ​важный шаг в этом направлении».

На выставке атомщики показали главе правительства Михаилу Мишустину систему предиктивной аналитики «АтомМайнд» на основе технологий ИИ. Она осуществляет контроль технологического процесса, оповещает о нарушениях и фиксирует метрики соблюдения технологической дисциплины, чтобы прогнозировать качество изделий и проблемы с оборудованием до того, как они повлияют на ход производства. «АтомМайнд» работает на четырех предприятиях топливного дивизиона госкорпорации, к концу 2024 года ее внедрят на 12. Этот цифровой продукт представлен на отечественном рынке для применения в различных отраслях промышленности», — ​отметила директор по цифровизации «Росатома» Екатерина Солнцева.

Компания «Русатом Инфраструктурные решения» представила свой флагманский цифровой продукт — ​IoT-платформу (Internet of Things — ​интернет вещей) для предприятий. Она автоматизирует и диспетчеризирует инженерные системы, настраивает энергоэффективные режимы работы оборудования на промышленных объектах, в офисных зданиях и жилых домах. На практике подтверждено сокращение эксплуатационных затрат на 9–16 %, при этом производительность труда повышается в пять раз. Используя возможности этой платформы, можно быстро и с минимальными затратами построить автоматизированную систему управления технологическими процессами любой сложности. Искусственный интеллект помогает обнаружить скрытые утечки и предотвращать аварии.

20.07.23 15.07.2023 3DNews. В России создали 16-кубитный квантовый компьютер

На днях на Форуме будущих технологий физики из ФИАН вместе с коллегами из Российского квантового центра представили 16-кубитный квантовый компьютер на ионах иттербия. Примерно за минуту компьютер выполнил моделирование молекулы гидрида лития, на что обычному компьютеру потребовалось бы гораздо больше времени.

 Квантовый компьютер на ионах. Источник изображения: Фонд НТИ
 

Квантовый компьютер на ионах. Источник изображения: Фонд НТИ

«У нас всё получилось, — подвел итог вычислениям руководитель «Росатома» Алексей Лихачев, который доверил удалённо запустить вычисления президенту России Владимиру Путину. — Это практическая задача».

Гидрид лития — это неорганическое соединение, которое применяется, в частности, в атомной энергетике, как пояснили в агентстве ТАСС, которое осветило событие.

Согласно плану развития квантовых технологий в России, государство выделило порядка 100 млрд рублей на создание 100-кубитового квантового компьютера к 2025 году. Российские учёные сделали ставку на кубиты из ионов, которые демонстрируют большее время когерентности и, следовательно, дают больше шансов на успешное завершение квантовых алгоритмов с меньшим уровнем ошибок.

Прототип четырёхкубитового компьютера на ионах был представлен в 2021 году. Затем учёные расширили платформу до использования кудитов вместо кубитов — это сродни увеличению разрядности каждого кубита, что позволяет наращивать производительность без увеличения числа физических кубитов. В этом году система разрослась до 16 кубитов. В следующем году учёные обещают представить 20-кубитовый процессор. Возможно в 2025 году 100-кубитовая система и не появится, но если в ход пойдёт увеличение разрядности через кудиты, то план развития квантовых технологий в России вполне может быть выполнен и даже перевыполнен.

 

 

20.07.23 14.07.2023 Министерство цифрового развития, связи и массовых коммуникаций РФ. В России создали 16-кубитный квантовый компьютер

МОСКВА, 13 июля. /ТАСС/. Российские ученые создали 16-кубитный квантовый компьютер. Его продемонстрировали в четверг президенту России Владимиру Путину на Форуме будущих технологий. Как следует из материалов выставки, на этом компьютере с помощью облачной платформы запущен алгоритм моделирования молекулы. На сегодня это самый мощный квантовый компьютер в стране.

Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность показывает ионный процессор. До конца 2024 года планируется увеличить число кубитов в отечественных вычислительных машинах до 50-100.

"В 2019 году мы запустили совместно с Физическим институтом Российской академии наук и с Квантовым центром проект по разработке квантового процессора. Он стал лишь одной из платформ. Сразу несколько серьезных научных групп работает над этим направлением: ФИАН вместе с Квантовым центром - [разрабатывают процессоры] на ионной платформе, МГУ - на атомах и на фотонах, МИСИС и ФИЗТЕХ работают на сверхпроводниках. <…> На сегодняшний день можем сказать, что у нас уже 9 технологических платформ в работе. Есть несколько процессоров работающих квантовых вычислителей на разных платформах, и самый мощный из них - на кудитах", - рассказал гендиректор Росатома Алексей Лихачев, представляя квантовый компьютер президенту РФ.

Именно в кудитной технологии, по словам главы атомной отрасли, Россия вошла в тройку лидеров. "Американцы, австрийцы и мы", - подчеркнул Лихачев.

Компьютер разработан в рамках реализации дорожной карты по квантовым вычислениям командой ученых из Российского квантового центра и физического института им. И. П. Лебедева РАН при координации госкорпорации "Росатом".

Проект был запущен в 2019 году. На сегодняшний день в мире существуют квантовые копьютеры на ионах, вмещающие до 32 кубитов.

О форуме

Первый Форум будущих технологий проходит с 9 по 14 июля в московском Центре международной торговли. В этом году он посвящен квантовым технологиям. Мероприятие проводится в рамках Десятилетия науки и технологий в России. Оператором выступает Фонд Росконгресс при поддержке Минцифры и Российской академии наук, соорганизаторы - РЖД и Росатом. ТАСС является информационным партнером форума. 

https://digital.gov.ru/ru/events/45741/

Подкатегории