Новости
Российские физики показали, что можно использовать туннельный контакт для спектроскопии электронных состояний углеродных нанотрубок. Предложенная технология изготовления туннельного контакта и метод спектроскопии помогут точно определять ширину запрещенной зоны нанотрубок, которая является ключевой характеристикой для разработки любых электронных устройств на их основе. Результаты работы представлены в журнале Applied Physics Letters.
Углеродные нанотрубки — это уникальные по своей физической природе и свойствам объекты. Они последние три десятилетия активно исследуются и могут применяться в различных областях науки и техники.
Углеродную нанотрубку можно рассматривать как свёрнутый в трубку лист графена. Уникальность свойств углеродных нанотрубок связана с тем, что от того, каким конкретно образом этот лист свернут, зависит ширина запрещённой зоны, определяющей полупроводниковые либо металлические свойства нанотрубки. Можно провести следующую аналогию: представьте обычный лист бумаги — его можно легко свернуть в трубку, соединяя либо две противоположные стороны, либо два противоположных угла, или же можно соединить угол с любой точкой на противоположной стороне. Если теперь мы заменим лист бумаги на маленький кусочек графена, окажется, что в зависимости от того, каким именно способом мы свернули графен в трубку, он будет вести себя либо как полупроводник, либо как металл (с точки зрения проводимости). Такое поведение делает углеродные нанотрубки привлекательным материалом для создания всевозможных электронных устройств.
Ширина запрещённой зоны — это основная характеристика полупроводников, которая в первую очередь обусловливает возможности их применения. На данном этапе развития технологий пока не придуман хороший способ выращивать углеродные нанотрубки с заранее известной шириной запрещенной зоны. В процессе синтеза могут вырастать углеродные нанотрубки с различной шириной запрещённой зоны и даже вообще без неё. Чтобы определять ширину запрещенной зоны и конкретный вид распределения электронов по энергии, для каждой отдельной трубки традиционно использовалась туннельная спектроскопия при помощи туннельного микроскопа. У этого метода есть недостатки: он неточный и дорогой.
В опубликованной работе учёные предложили технологичный (то есть хорошо совместимый с современными технологиями изготовления электронных устройств) и масштабируемый метод для определения спектра электронов одиночной углеродной нанотрубки. Для этого они изготовили туннельный контакт (см. рисунок (а)). Туннельный контакт — это контакт с очень высоким электрическим сопротивлением. Металл контакта не напрямую связан с трубкой, а через тонкий слой диэлектрика (см. рисунок (b)).
«Диэлектрик создает туннельный барьер — энергетическую стену, которая препятствует переносу носителей заряда. «Классическая» частица не может преодолеть такой барьер, но квантовая механика «позволяет» электрону проводимости или дырке пройти сквозь такой барьер, то есть протуннелировать. Важно, что вероятность туннелирования пропорциональна плотности состояний в исследуемом объекте. Благодаря этому свойству туннельный контакт позволяет сканировать распределение электронов по энергии в трубке», — комментирует один из авторов исследования Яков Матюшкин, младший научный сотрудник лаборатории наноуглеродных материалов МФТИ, аспирант ВШЭ.
Исследователи сделали серию образцов, каждый из которых представлял собой одиночную углеродную нанотрубку с двумя парами омических и двумя парами туннельных контактов (см. рисунок (а)). Учёные сначала вырастили на кремниевой подложке трубку, а затем присоединили к ней туннельные и омические контакты. В ходе эксперимента при температуре жидкого гелия между туннельным и омическим контактом прикладывали напряжение и измеряли электрический ток, который протекал через систему. Зависимость тока от напряжения позволила получить спектр электронов в углеродной нанотрубке и узнать ширину запрещённой зоны.
«Предложенный в работе метод позволяет не только получить информацию о зонной структуре углеродной нанотрубки, но и выяснить, как она меняется под влиянием внешних воздействий. В частности, в данной работе мы при помощи туннельного контакта напрямую наблюдали снятие долинного вырождения в магнитном поле. Этот давно предсказанный эффект, проявляющийся в энергетическом расщеплении максимумов плотности состояний, мы впервые продемонстрировали в случае индивидуальной нанотрубки», — говорит соавтор исследования Георгий Федоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ.
Образцы были изготовлены сотрудниками лаборатории наноуглеродных материалов МФТИ на базе ЦКП МФТИ. Экспериментальная часть выполнена в проблемной радиофизической лаборатории Московского педагогического государственного университета и в ЦКП ФИАН «Исследования сильно-коррелированных систем».
Источники: Пресс-служба МФТИ