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Введение

Актуальность работы
На данный момент Стандартная Модель является наиболее точ-

ной и всеобъемлющей теорией взаимодействия элементарных ча-
стиц. Эталонным примером точности обычно служит величина ано-
мального магнитного момента электрона: совпадение теоретическо-
го вычисления [1] и экспериментального значения [2] на уровне 10−12.
Однако существует ряд явлений, выходящих за рамки Стандартной
Модели. Такие явления составляют Новую Физику, которая сейчас
активно исследуется как экспериментально, так и теоретически [3–
9]. В связи с этим особую важность представляет детальный анализ
процессов в рамках Стандартной Модели. Если будет обнаружено
расхождение теоретического расчета с экспериментальным измере-
нием, то это может быть указанием на Новую Физику и стимулиро-
вать исследования в этом направлении.

Ускорительные эксперименты представляют собой отличный по-
лигон для тестирования Стандартной Модели [10–13]. Текущий Run
3 Большого Адронного Коллайдера (БАК) настроен на столкнове-
ния протонов рекордно высоких энергий (в системе центра инер-
ции протонов энергия

√
s = 13.6 ТэВ), что позволяет проводить бо-

лее прецизионные эксперименты по проверке Стандартной Модели
и искать возможные проявления Новой Физики. Имеются некоторые
указания на возможную физику за пределами Стандартной Модели,
одним из которых является аномальный магнитный момент мюона.
Эксперимент коллаборации Фермилаб по измерению аномального
магнитного момента мюона показывает [14], что имеется некоторое
отклонение от предсказания СтандартнойМодели [15]. Если это про-
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явление Новой Физики, то во взаимодействиях мюонов при высоких
энергиях эффект может быть еще более заметен.

БАК является хорошим источником высокоэнергетических мюо-
нов, которые рождаются в столкновениях ультрарелятивистских про-
тонов. Особый интерес представляют так называемые ультрапери-
ферические столкновения, в которых протоны (или ядра свинца) рас-
сеиваются квазиупруго и выживают после столкновения [16,17]. Та-
кие события обладают низкой адронной активностью и хорошей сиг-
натурой. Рождение новых частиц в ультрапериферических столкно-
вениях, в том числе гипотетических частиц темной материи, широко
экспериментально исследуется всеми коллаборациями БАК: ATLAS
[18–20], CMS [21–23], LHCb [24,25] иALICE [26,27]. Для анализа по-
добных процессов обычно используются методыМонте-Карло моде-
лирования: STARLight [28], SuperChic [29], HERWIG [30] и т.д. Изло-
женный в диссертации подход позволяет выполнять простое числен-
ное интегрирование полученных аналитически выражений, не при-
бегая к Монте-Карло симуляциям. Такой независимый анализ обес-
печивает более глубокое понимание физики рассматриваемого про-
цесса.

Не меньший интерес представляют полуэксклюзивные процес-
сы. В таких реакциях только один протон выживает после столкно-
вения, в то время как другой может разрушиться, образуя другие
адроны. Полуэксклюзивные процессы обладают большим сечени-
ем и являются лабораторией для исследования эффектов сильных
взаимодействий [31–34] и могут быть чувствительны к Новой фи-
зике [35, 36]. Их экспериментальное исследование также проводи-
лось на БАК [37–39]. Теоретический анализ таких процессов пред-
ставляет собой более сложную, но не менее важную задачу. Развитие
метода, примененного к рождению мюонов в квазиупругом протон-
протонном столкновении, позволит вывести аналитическое выраже-
ние для сечения рассеяния и сравнить численный результат с экспе-
риментальными данными без использования метода Монте-Карло.
Поскольку с учетом неупругих процессов экспериментальных дан-
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ных становится больше, мы можем рассчитывать на дальнейшее ши-
рокое применение наших теоретических расчетов к анализу данных.

Таким образом, детальное исследование процессов рождениямю-
онов в столкновениях протонов на БАК представляет собой крайне
актуальную и в то же время перспективную задачу. Полученные фор-
мулы могут быть использованы для исследований более тяжелых
лептонов (например, τ -лептонов или суперсимметричных чарджи-
но) как в других экспериментах на БАК, так и на будущих ускори-
телях еще более высоких энергий [40] (например, HL-LHC, SPPC,
FCC). В то же время данное исследование служит дополнительной
проверкой теоретических предсказаний СМ.

Цель работы
Целью данной работы является вычисление сечений процессов

рождения мюонных пар в протон-протонных столкновениях на БАК
с учетом экспериментальных ограничений, накладываемых на фазо-
вый объем конечных продуктов данных процессов.

Для достижения поставленной цели необходимо было решить сле-
дующие Задачи:

1. Рассмотреть процесс ультрапериферического рассеяния pp →
pµ+µ−p, который экспериментально исследовался коллабора-
цией ATLAS [41].

2. Получить аналитические выражения для полуэксклюзивных про-
цессов pp→ pµ+µ−X , идущих через промежуточную двухфо-
тонную аннигиляцию γγ → µ+µ−, и применить их к данным
экспериментаATLAS [42], в котором измерялся подобный про-
цесс.

3. Теоретически оценить вклад слабого взаимодействия в полу-
эксклюзивный процесс рождениямюонной пары в протон- про-
тонном столкновении.

Методы исследования
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Основным аналитическим методом исследования является диа-
граммная техникаФейнмана, позволяющая вычислять матричные эле-
менты процессов в рамках теории возмущений. С ее помощью были
получены формулы для сечений рассеяния всех процессов, рассмат-
риваемых в данной работе. Для дальнейшего численного вычисле-
ния с учетом экспериментальных ограничений, накладываемых на
фазовый объем конечных продуктов, была использована и дораба-
тывалась библиотека libepa [43].

Теоретическая и практическая значимость
Полученные в данной работе результаты представляют теорети-

ческую и практическую значимость, поскольку позволяют сравнить
теоретические предсказанияСтандартнойМодели с эксперименталь-
ными данными и сделать вывод о том, насколько точно описыва-
ет Стандартная Модель физику в данной области энергий и соот-
ветственно насколько большое окно есть для Новой Физики. Разви-
тый метод позволяет анализировать как эксклюзивные (ультрапери-
ферические столкновения), так и полуэксклюзивные (например, ко-
гда один из протонов не детектируется) процессы на БАК, и может
быть обобщен для применения к подобным процессам на будущих
коллайдерах более высоких энергий, которые являются основным
перспективным инструментом исследования физики элементарных
частиц. Выведенные аналитические формулы позволяют рассматри-
вать не только процессы аннигиляции калибровочных бозонов в па-
ру мюонов в рамках Стандартной Модели, но и процессы, включа-
ющие частицы вне ее рамок (например, аннигиляцию через гипоте-
тический скалярный резонансX(28 ГэВ), рассмотренную в одной из
работ диссертации), что расширяет область применения используе-
мого в работе подхода.

Научная новизна

1. Впервые получены аналитические выражения для сечений про-
цессов рождения пары заряженных лептонов в протон-протонных
столкновениях на БАК с учетом экспериментальных ограниче-
ний. Рассмотрены как эксклюзивные, так и полуэксклюзивные
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процессы, доступные на эксперименте ATLAS.

2. Показано, что результат вычисления в рамках СМ совпадает в
пределах 2− 3 стандартных отклонений с экспериментальны-
ми данными. Вычисление проведено без использованияМонте-
Карло моделирования, как делалось ранее в литературе.

3. Впервые установлено, что поправка от слабого взаимодействия
к доминирующему электромагнитному может быть значитель-
ной в определенной кинематической области и быть обнаруже-
на на эксперименте.

Положения, выносимые на защиту

1. Развитый теоретический метод позволяет выводить аналити-
ческое выражение для сечения рождениямюонной пары в протон-
протонном столкновении через фотон-фотонное слияние на БАК,
когда один из протонов попадает в передний детектор ATLAS,
а другойможет разрушиться, с учетом экспериментальных огра-
ничений на конечный фазовый объем.

2. Подход, основанный на представлении амплитуд рассеяния в
спиральном базисе, позволяет существенно упростить вычис-
ления и приводит к ответу, согласующемуся на уровне 2 − 3
стандартных отклонений с экспериментальными данными кол-
лаборации ATLAS.

3. Вычисленный с помощью изложенного в тексте диссертации
метода теоретический вклад поправки от слабого взаимодей-
ствия в сечение полуэксклюзивного процесса рождения мюон-
ной пары в протон-протонном столкновении может достигать
20% при определенных кинематических ограничениях на ко-
нечную мюонную пару.

Степень достоверности и апробация результатов
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Достоверность результатов диссертационного исследования обу-
славливается использованием в нем апробированных в научной прак-
тике методов теоретической физики, а также их сравнением с уже
известными результатами. Все результаты были опубликованы в ре-
цензируемых научных изданиях, а также изложены на семинарах и
международных конференциях:

1. The Physics of the Dimuons at the LHC. Объединенный институт
ядерных исследований, г. Дубна, Россия. Июнь 2022.

2. The XXVI International Scientific Conference of Young Scientists
and Specialists (AYSS-2022), Объединенный институт ядерных
исследований, г.Дубна, Россия. Октябрь 2022.

3. Семинар лаборатории квантовой теории поляОТФФИАН.Март
2023.

4. Twenty-First LomonosovConference on Elementary Particle Physics,
МГУ им. Ломоносова, г.Москва, Россия. Август 2023.

5. Молодежная конференция «Физика элементарных частиц и кос-
мология», Высшаяшкола экономики, г.Москва, Россия. Октябрь
2023.

6. Московская международная школа по физике 2024. Учебный
центр ВШЭ ”Вороново” , с.Вороново, Россия. Февраль-март
2024.

7. Научная сессия секции ядернойфизикиОФНРАН.ОИЯИ,Дуб-
на, Россия. Апрель 2024.

8. Международная конференция ”QUARKS-2024”. Переславль-
Залесский, Россия. Май 2024.
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1 Квазиупругий процесс
pp→ pµ+µ−p через фотон-фотонную
аннигиляцию γγ → µ+µ−

В данной Главе будет рассмотрен эксклюзивный процесс рож-
дения мюонной пары через двухфотонное слияние в столкновении
протонов на БАК. Подобные квазиупругие столкновения называют
ультрапериферическими, поскольку взаимодействие протонов свои-
ми электромагнитными полями происходит на достаточно большом
расстоянии. Такие события представляют большой эксперименталь-
ный интерес, так как являются достаточно чистыми: в конечном со-
стоянии остается пара лептонов и два упруго рассеянных протона без
вторичных частиц от процессов сильного взаимодействия. На при-
мере подобного процесса будет продемонстрирован хорошо извест-
ный метод эквивалентных фотонов [44–46], который и в дальней-
шем будет использоваться для квазиупругой части полуэксклюзив-
ных процессов. Важным элементом точного вычисления сечений, в
которых протоны рассеиваются упруго, является учет форм-факторов
протонов. Необходимо также учитывать так называемый ”фактор
выживания” (survival factor) [47–49], который приводит к эффек-
тивному уменьшению числа событий за счет возможного сильно-
го взаимодействия между протонами, пролетающими на достаточ-
но близком прицельном расстоянии, когда столкновение уже нель-
зя считать ультрапериферическим. Полученное теоретическое вы-
ражение для дифференциального сечения рассеяния позволяет есте-
ственным образом наложить экспериментальные ограничения на фа-
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зовый объем, которые использовались в эксперименте ATLAS, ис-
следовавшем данный процесс [41]. В рамках данного подхода будет
также поставлено ограничение на константу взаимодействия резо-
нанса X(28 ГэВ) с фотонами.

Данная Глава написана на основе работы [50].

1.1 Приближение эквивалентных фотонов
Метод эквивалентных фотонов нашелширокое применение в том

числе в двухфотонной физике. В частности было указано, что такой
метод можно с успехом применить к ультрапериферическим процес-
сам на БАК, рассматривая последний как фотон-фотонный коллай-
дер [51]. Получим основные формулы, необходимые для дальней-
шего вычисления. Рассмотрим процесс взаимодействия частицы 1 с
зарядом Ze с частицей 2 через обмен фотоном.

Суть метода заключается в факторизации ”мягкой” и ”жест-
кой” частей процесса. Под ”мягкой” частью подразумевается ис-
пускание так называемого ”квазиреального” фотона, т.е. фотона с
достаточно маленькой виртуальностью. ”Жесткая” же часть отве-
чает за дальнейшее взаимодействие излученного фотона с частицей
2. Таким образом, дифференциальное сечение полного процесса dσ
принимает вид [52]:

dσ = dσrn(q⃗)d
3p′, (1.1)

где p⃗′ - конечный импульс частицы 1, q⃗ = p⃗ − p⃗′ - импульс фото-
на, p⃗ - начальный импульс частицы 1, dσr - дифференциальное сече-
ние ”жесткого” подпроцесса взаимодействия испущенного фотона
с частицей 2 и n(q⃗) - спектр эквивалентных фотонов. Величина n(q⃗)
может быть представлена в виде [51]

n(q⃗) =
Z2α

π2ω

q⃗2⊥
(q⃗2⊥ + (ω/γ)2)2

, (1.2)
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где α - постоянная тонкой структуры, ω - энергия фотона, q⃗⊥ - им-
пульс фотона, поперечный к импульсу частицы 1, γ - лоренц-фактор
частицы 1.

Получить формулу (1.2) можно в рамках нековариантной теории
возмущений. Предположим, что заряженная ультрарелятивистская
частица a с массой m и зарядом Z излучает фотон γ с маленькой
виртуальностью |q2| ≪ m2 и переходит в состояние a′. Далее фотон
испытывает взаимодействие с частицей b, которая переходит в со-
стояние b′. Характерное время подпроцесса с излучениием в таком
случае существенно больше времени взаимодействия фотона после
излучения. Тогда элемент S−матрицы полного процесса может быть
факторизован следующим образом:

< a
′
b
′|Ŝ|ab >≈< b

′|Ŝ|γb >< γa
′|Û(0;−∞)|a >, (1.3)

где унитарный оператор Û(t1, t2) есть оператор эволюции от времени
t1 до t2 и Ŝ ≡ Û(−∞,+∞). Поскольку теперь в элементеU -матрицы
интегрирование ведется не по всему интервалу времени, а до t =
0, то при вычислении квадрата матричного элемента вместо дельта-
функции, отвечающей закону сохранения энергии возникнет фактор

2πδ(E − E
′ − ω) → i

E − E ′ − ω
, (1.4)

где E, E ′, ω - энергии частицы a в начальном и конечном состоя-
нии и фотона соответственно. Квадрат элемента U -матрицы опре-
деляет спектр эквивалентных фотонов n. После исключения триви-
ального символа Кронекера δij , выделения нормировок 1

√
2E вол-

новых функций и дельта-функции, описывающей закон сохранения
трехмерного импульса, получим из элемента U -матрицы матричный
элементM , для которого формулируются стандартные правила Фей-
нмана квантовой электродинамики. Тогда для дифференциального
спектра эквивалентных фотонов dn имеем:

dn =
1

2E

∑
|M |2

(E − E ′ − ω)2
dΦ2(2π)

3δ(3)(p⃗− p⃗
′ − k⃗), (1.5)
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где p⃗, p⃗′, k⃗ - трехмерные импульсы соответственно, M - амплитуда
излучения частицей a фотона γ (усредненная и просуммированная
по поляризациям) и dΦ2 - двухчастичный фазовый объем системы
|a′γ >:

dΦ2 ≡
d3k

(2π)32ω

d3p
′

(2π)32E ′ . (1.6)

подчеркнем, что в процессе a→ a′γ энергия не сохраняется, все ча-
стицы предполагаются на массовой поверхности. Суммирование по
поляризациям фотона выполняется только по физическим степеням
свободы, поскольку калибровочная инвариантность нарушена (учи-
тывается только диаграмма с излучением фотона в конечном состо-
янии).

Будем работать в следующей кинематике: p = (E, 0⃗, p), p′ =
(E ′,−p⃗⊥, (1 − z)p) и k = (ω, p⃗⊥, zp), где 0 ≤ z ≤ 1. В ультраре-
лятивистском пределе |p⊥|,m≪ E имеем

E ′ ≈ p(1− z) +
p2⊥ +m2

2(1− z)p
; (1.7)

ω ≈ zp+
p2⊥
2zp

.

Тогда для разности энергий имеем

E − ω − E ′ ≈ − p2⊥ + z2m2

2z(1− z)E
. (1.8)

С учетом интегрирования с трехмерной дельта-функцией фазовый
объем можно переписать в виде:

dΦ2 ≈
dωd2p⊥

32π3ω(1− z)E
. (1.9)

Квадрат амплитуды вычисляется по стандартным правиламФейнма-
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на: ∑
|M |2 = Ze2

2
Sp
[
(p̂′ +m)γi(p̂+m)γj

](
δij −

kikj

k⃗2

)
= (1.10)

= 4Ze2[EE ′ − (k⃗p⃗)(p⃗′)

k⃗2
−m2] ≈

≈ 2Ze2

z(1− z)

[
p2⊥(z

2 − 2z + 2) +m2z4
]
.

Подставляя выражения (1.8), (1.9) и (1.10),обратно в (1.5), получаем
(e2 = 4πα)

dn =
α

2π2
dω

ω

p2⊥(z
2 − 2z + 2) +m2z4

(p2⊥ + z2m2)2
d2p⊥. (1.11)

Поскольку z ≈ ω/E ≪ 1 в ультрарелятивистском случае, то в пре-
небрежении слагаемыми ∼ z, z2, z4 воспроизводится формула (1.2).

Чтобы перейти к энергетическому спектру необходимо проинте-
грировать выражение (1.2) по q⊥. Нижний предел диктуется приме-
нимостью метода: |q⃗⊥| ≥ ω/γ2. Действительно интеграл по q⃗⊥ до
ω/γ2 ведет себя как константа по энергии мягкого фотона ω:

n(ω) ∼
∫ ω/γ4

dq2⊥
q2⊥

ω4/γ4
∼ 1

γ4
, (1.12)

в то время как для ω2/γ4 ≪ q2⊥ ≪ m2 (m - масса излучающей части-
цы) имеется логарифмическое усиление при малых ω:

n(ω) ∼
∫ m2

dq2⊥
q2⊥
q4⊥

∼ ln
γm

ω
. (1.13)

Верхний предел определяется не только точностью приближения, но
и условиями конкретной задачи, о чем будет сказано в следующем
пункте.
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1.2 Сечение рассеяния p(γγ)p→ pµ+µ−p

Как уже говорилось выше, данное столкновение называется уль-
трапериферическим. Диаграммы Фейнмана, дающие вклад, приве-
дены на Рис.1.1. В таком процессе протон ”выживает” после рассе-

p p

µ+

µ−

pp

p p

µ+

µ−

pp

Рис. 1.1: Диаграммы Фейнмана, дающие вклад в процесс pp →
p(γγ)p→ pµ+µ−p

яния, а не превращается в адроны. Тогда в качестве верхнего преде-
ла при интегрировании выражения (1.2) можно взять величину q̂ =
0.2 ГэВ [51]. Тогда окончательное выражение для энергетического
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спектра эквивалентных фотонов принимает вид:

n(ω) =
2α

πω
ln
q̂γ

ω
, (1.14)

где для протона подставлено Z = 1. Величина γ = 6.93 × 103 для
протонов на БАК.

В рамках метода эквивалентных фотонов сечение ультраперифе-
рического процесса pp→ p(γγ)p→ pµ+µ−p факторизуется следую-
щим образом:

σ(pp(γγ) → pµ+µ−p) =

q̂γ∫
m2

µ/q̂γ

dω1

q̂γ∫
m2

µ/ω1

dω2σ(γγ → µµ)n(ω1)n(ω2),

(1.15)
гдеmµ - масса мюона. Явное обрезание на верхнем пределе обеспе-
чивает сходимость интеграла и диктуется критерием применимости
приближения эквивалентных фотонов [52]. Нижние пределы инте-
грирования получаются из рассмотрения закона сохранения 4-импульса
”жесткого” процесса γγ → µ+µ−: (q1+q2)2 = (k1+k2)

2, где q1,2 и k1,2
- 4-импульсы фотонов и мюонов соответственно. С учетом q21,2 ≈ 0,
k21,2 = m2

µ и 2k1k2 ≤ 2m2
µ получим ω1ω2 ≤ m2

µ. Удобно для даль-
нейшего наложения экспериментальных ограничений и численно-
го интегрирования перейти к следующим переменным: s = 4ω1ω2

- квадрат инвариантной массы мюонной пары, и x = ω1/ω2. В таких
переменных формула (1.15) принимает следующий вид:

σ(pp(γγ) → ppµ+µ−) =

∞∫
(2mµ)2

σ(γγ → µ+µ−)ds× (1.16)

×
∞∫
0

dx

8x
n

(√
sx

4

)
n

(√
s

4x

)
.
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1.3 Экспериментальные ограничения
ATLAS

Рассматриваемый процесс изучался коллаборацией ATLAS [41]
при энергии в системе центра инерции сталкивающихся протонов
13 ТэВ. В Таблице 1.1 приводятся кинематические ограничения на
пару конечных мюонов, используемые в эксперименте: ограничение
на инвариантную массу пары конечных мюонов s, на поперечный
импульс мюона относительно протонного пучка pT и псевдобыстро-
ту мюона η = − ln tan θ/2.

Инвариантная масса pT |η|
22 ГэВ <

√
s < 30 ГэВ > 6 ГэВ < 2.4

Таблица 1.1: Ограничения, накладываемые экспериментом ATLAS
на фазовый объем мюонной пары [41]. pT - поперечный импульс мю-
она по отношению к протонному пучку, η = − ln tan θ/2 - псевдо-
быстрота мюона.

Для того, чтобы имплементировать в формулу (1.16) приведен-
ные в Таблице 1.1 ограничения необходимо ввести интегрирование
по pT и η. Дифференциальное по поперечному импульсу сечение
dσ(γγ → µ+µ−)/dpT дается формулой [52]:

dσ(γγ → µ+µ−) =
2πα2

s2

(
s+ t

t
+

t

s+ t

)
dt =

8πα2

spT

1− 2p2T/s√
1− 4p2T/s

dpT .

(1.17)
Путем прямых кинематических преобразованийможно получить [51]:

1

x̂
< x < x̂, where x̂ = exp(2η̂)

1−
√

1− 4p2T/s

1 +
√
1− 4p2T/s

, (1.18)

где η̂ = 2.4.
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Таким образом, окончательно получаем для сечения pp(γγ) →
pµ+µ−p:

σ(pp(γγ) → ppµ+µ−) =

ŝmax∫
ŝmin

ds

√
s/2∫

p̂T

dσ(γγ → µ+µ−)

dpT
dpT× (1.19)

×
x̂∫

1/x̂

dx

8x
n

(√
sx

4

)
n

(√
s

4x

)
,

где ŝmin = 22 ГэВ, ŝmax = 30 ГэВ, p̂T = 6 ГэВ согласно данным
из Таблицы 1.1. Верхний предел по pT можно получить в системе
центра инерции мюонной пары в ультрарелятивистском приближе-
нии. Подстановка выражения (1.14) в (1.19) приводит к следующему
окончательному выражению [50]

σ(pp(γγ) → ppµ+µ−) =
α2

π2

ŝmax∫
ŝmin

ln2
(2q̂γ)2

s

ds

s

√
s/2∫

p̂T

dσ(γγ → µ+µ−)

dpT
×

(1.20)

×

1− 1

3

(
ln x̂

ln (2q̂γ)2

s

)2
 ln x̂ dpT .

В пренебрежении вторым слагаемым в квадратных скобках, кото-
рое мало, можно провести интегрирование до конца аналитически:
σ(pp(γγ) → ppµ+µ−) = 0.73 пбн. Численное интегрирование выра-
жения (1.20) приводит к меньшему значению 0.68 пбн.

1.4 Учет форм-фактора протона F1 и
фактора выживания

При упругом рассеянии протона его пространственная структура
учитывается феноменологически путем введения форм-факторов в
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вершину электромагнитного взаимодействия Γµ [52]:

Γµ = F1(Q
2)γµ −

F2(Q
2)

2mp
σµνq

ν, (1.21)

где F1,2(Q
2) - форм-факторы Дирака и Паули, Q2 = −q2 > 0 (по-

скольку в процессе рассеяния q2 < 0), q - 4-импульс излученного
фотона,

σµν = (1/2)(γµγν − γνγµ), (1.22)
mp - масса протона. Удобнее от форм-факторов Дирака и Паули пе-
рейти к форм-факторам Сакса:

GE(Q
2) = F1(Q

2)− Q2

4m2
p

F2(Q
2), (1.23)

GM(Q2) = F1(Q
2) + F2(Q

2).

Зависимость форм-факторов от Q2 дается так называемым диполь-
ным приближением [53]:

GE(Q
2) =

1

(1 +Q2/Λ2)2
, GM(Q2) =

µp
(1 +Q2/Λ2)2

, Λ2 = 0.66 ГэВ,

(1.24)
где µp = 2.79 - магнитный момент протона [54].

Спектр эквивалентных фотонов n(ω) пропорционален квадрату
матричного элемента протонного тока с испусканием фотона. Поэто-
му в выражение для спектра войдет некоторая квадратичная комби-
нация из форм-факторов. При вычислении квазиупругого процесса,
рассматриваемого в этой Главе, мы учитывали только форм-фактор
F1(Q

2), однако в Главе 2 для более точного вычисления будет учтен
также и F2(Q

2). Окончательный ответ имеет следующий вид [51]:

n(ω) =
α

π2ω

∫
q⃗ 2
⊥ F

2
1 (q⃗

2
⊥ + ω2/γ2)

(q⃗ 2
⊥ + ω2/γ2)2

d2q⊥, (1.25)

где величина F1(Q
2) дается следующим из (1.23) выражением:

F1(Q
2) = GE(Q

2)

[
1 +

(µp − 1)τ

1 + τ

]
, (1.26)
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где τ = Q2/4m2
p. Стоит отметить, что присутствие форм-фактора в

формуле (1.25) делает интеграл сходящимся и позволяет проводить
интегрирование до бесконечности.

Обсудим влияние фактора выживания на величину сечения. Дан-
ный фактор определяет вероятность того, что не произойдет сильно-
го взаимодействия между протонами, и эффективно уменьшает се-
чение, вычисленное только при учете электромагнитного взаимодей-
ствия. Его можно определить как следующее отношение:

S2
γγ =

∫
b1>0

∫
b2>0 n(b1,ω1)n(b2,ω2)P (|⃗b1 − b⃗2|)d2b1d2b2

n(ω1)n(ω2)
, (1.27)

где b⃗1,2 - прицельный параметр первого и второго протона, а функция
P (|⃗b1− b⃗2|) - вероятность того, что протон ”выживет” при столкно-
вении [48]:

P (b) =
(
1− e−

b2

2B

)2
. (1.28)

Параметр B = 19.7 ГэВ−2 [55]. В данной Главе мы явно учтем веро-
ятность ”выживания” P (b) в формуле для сечения (1.19). Для этого
выделим интегрирование по прицельному параметру в формуле для
спектра эквивалентных фотонов:

n(ω) =

∫
n(b, ω)d2b. (1.29)

С учетом дополнительного интегрирования формула (1.19) прини-
мает следующий вид:

σ(pp(γγ) → ppµ+µ−) =

ŝmax∫
ŝmin

ds

√
s/2∫

p̂T

dpT
dσ(γγ → µ+µ−)

dpT
×

×
x̂∫

1/x̂

dx

8x

∫
b1>0

d2b1

∫
b2>0

d2b2 n

(
b1,

√
sx

4

)
n

(
b2,

√
s

4x

)
P (|⃗b1 − b⃗2|).

(1.30)
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Результат численного интегрирования приводит к следующей вели-
чине сечения [50]

σ(pp(γγ) → pµ+µ−p) = 0.68 пбн. (1.31)

1.5 Вклад скалярного резонанса X
В том же году, когда вышла работа ATLAS по измерению сече-

ния ультрапериферического столкновения pp(γγ) → pµ+µ−p, колла-
борация CMS указала на возможное существование резонанса X с
массойMX = (28.3± 0.4) ГэВ [56]. В работе [57] изучался возмож-
ный вклад данной частицы в аномальный магнитный момент мю-
она, и были получены константы взаимодействия X с мюонами в
скалярном и векторном случае. В рассматриваемом нами диапозоне
инвариантной массы мюонной пары 22 ГэВ <

√
s < 30 ГэВ, может

произойти резонансное рождениеX , если мы предположим взаимо-
действие с фотонами. В таком случае X не может быть вектором,
поскольку не существует состояния двух фотонов с полным момен-
том единица (знаменитая теорема Ландау-Янга). Ниже рассмотрим
соответствующий процесс pp(γγ) → pµ+µ−p, идущий через проме-
жуточный скалярный резонанс γγ → X → µ+µ−.

ДиаграммаФейнмана для данного процесса изображена на Рис.1.2.
Эффективная вершина взаимодействия скаляра X с мюонами запи-
сывается в виде:

∆L̂Xµµ = Y ˆ̄µµ̂X̂, (1.32)
где X̂,µ̂ - скалярное поле и мюонное поле соответственно, величина
константы Y = 0.041 ± 0.006 была получена в работе [57]. Тогда
нетрудно получить для ширины распада X → µ+µ−:

ΓX→µ+µ− =
Y 2

8π
MX

(
1−

4m2
µ

M 2
X

)3/2

= (1.8± 0.5)МэВ. (1.33)

Экспериментальное значение ширины пика согласно [56]:

Γexp
X = (1.8± 0.8) ГэВ. (1.34)
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p p
µ−

µ+
pp

X

Рис. 1.2: Вклад резонанса X в квазиупругий процесс pp(γγ) →
pµ+µ−p

Эта величина близка к разрешению детектора для мюонной системы
σ = 0.45 ГэВ. Поэтому мы рассмотрим еще случай, когда полная
ширина определяется шириной распада в мюоны (1.34).

Эффективная калибровочно-инвариантная вершина взаимодей-
ствия скаляра X с фотонами может быть представлена в виде:

∆L̂Xγγ = κX̂F̂µνF̂
µν, [κ] = [1/m], (1.35)

где F̂µν = ∂µÂν − ∂νÂµ, Âµ - оператор фотонного поля. Отсюда
несложно получить ширину распада X → γγ:

ΓX→γγ = (κ2M 3
X)/(16π). (1.36)

Пропагатор G нестабильной скалярной частицы с учетом радиаци-
онных поправок может быть записан в виде:

G(P 2) =
1

P 2 −M 2
0 − Π(P 2)

, (1.37)

где P - 4-импульс частицы,M0 - ”голая” масса частицы,Π(P 2) - по-
ляризационный оператор. В окрестности перенормированной массы
частицыM имеемM 2 = M 2

0 + ReΠ(M 2) и ImΠ(M 2) = −MΓ, где
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Γ - полная ширина распада частицы. Таким образом для амплиту-
ды подпроцесса γγ → X → µ+µ− с промежуточной нестабильной
скалярной частицей X имеем

A = κF 1
µνF

2
µν

1

s−M 2
X + iΓXMX

µ̄µY, (1.38)

где как и ранее в данной Главе s = 4ω1ω1 - квадрат инвариантной
массы мюонной пары. Для вычисления соответствующего сечения
неоюходимо вычислить просуммированный и усредненный по по-
ляризациям квадрат модуля амплитуды (1.38):

|A|2 = κ2Y 2M 6
X

1

(s−M 2
X)

2 + Γ2
XM

2
X

. (1.39)

Выражая Y и κ из формул (1.34) и (1.36) через соответствующие ши-
рины (в (1.34) используем пределmµ/MX = 0) получим выражение
для сечения γγ → X → µ+µ− вида резонансного сечения Брейта-
Вигнера [50]:

σγγ→X→µ+µ− = 8π
ΓX→γγΓX→µ+µ−

(s−M 2
X)

2 + Γ2
XM

2
X

. (1.40)

Обсудим интерференцию между γγ → µ+µ− и γγ → X →
µ+µ−. Можно показать, что ее вклад мал по сравнению с вкладом
собственно скаляраX из следующих соображений. Проанализируем
в ультрарелятивистском пределе s ≫ m2

µ вклад диаграммы Рис.1.1.
В этом пределе киральность совпадает со спиральностью частицы.
Электромагнитное взаимодействие с фермионами вида ∼ ūγµu =
ūLγµuL+ ūRγµuR сохраняет киральность. Поэтому мюонная пара бу-
дет рождаться либо µ−Lµ

+
R, либо µ

−
Rµ

+
L . Вклад от таких конфигураций

подавлен какmµ/
√
s. Вклад же диаграммы Рис.1.2 не приводит к та-

ком у подавлению, поскольку вершина Xµ̄µ Юкавского типа, и не
сохраняет киральность ∼ ūu = ūLuR + ūRuL. Рассмотрим область
s ≈ M 2

X . В таком случае фазы диаграмм Рис.1.1 (A0) и Рис.2.2 (AX)
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отличаются на π/2 (A0 вещественная, а AX чисто мнимая), и интер-
ференционный член ∼ Re(A0AX) = 0. Таким образом, для отно-
шения интерференционного вклада ∼ Re(A0AX) и вклада только от
резонанса |AX |2 получаем следующую безразмерную оценку

Re(A0AX)

|AX |2
∼ αΓX√

ΓX→µ+µ−ΓX→γγ

mµ

MX

(
1− M 2

X

s

)
, (1.41)

где мы учли константы связи в вершинах и s ≈M 2
X . Стоит отметить,

что эта оценка может быть получена и прямым анализом выражения
для амплитуды, написанного по соответствующим диаграммамФей-
нмана. Численно это отношение меньше 1% как для ΓX = 1.8 ГэВ,
так и для 1.8МэВ.

Вычислим теперь искомый вклад резонанса X в полное сечение
рассматриваемого ультрапериферического процесса. Для этого под-
ставим формулу (1.40) в (1.19) и воспользуемся логарифмическим
приближением для спектров эквивалентных фотонов (1.14). Тогда
интегралы по x и по pT можно взять аналитически и получить сле-
дующее выражение:

σ(pp(γγ) → ppµ+µ−)(X) =
8α2ΓX→γγΓX→µ+µ−

πM 2
X

× (1.42)

ŝmax∫
ŝmin

ds

(s−M 2
X)

2 + Γ2
XM

2
X

ln2
(2q̂γ)2

s

[√
1− 4p̂2T

s
×

×

(
2η̂ + ln(

1−
√
1− 4p̂2T/s

1 +
√

1− 4p̂2T/s
)
)
− ln

4p̂2T
s

]
.

Для узкого резонанса интегрирование выражения (1.42) может быть
далее выполнено аналитически благодаря известному соотношению:

ΓXMX

π[(s−M 2
X)

2 + Γ2
XM

2
X ]

→ δ(s−M 2
X), ΓX ≪ s−M 2

X (1.43)
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Результат имеет следующий вид:

σ(pp(γγ) → ppµ+µ−)(X) =
8α2ΓX→γγΓX→µ+µ−

ΓXM 3
X

ln2
(2q̂γ)2

M 2
X

× (1.44)

×

[√
1− 4p̂2T

M 2
X

(
2η̂ + ln(

1−
√

1− 4p̂2T/M
2
X

1 +
√

1− 4p̂2T/M
2
X

)

)
− ln

4p̂2T
M 2

X

]
.

Численно сечение в (1.44) равно [50]

σ(pp(γγ) → ppµ+µ−)(X) = 6.1× 104
ΓX→µ+µ−

MX

ΓX→γγ

ΓX
пбн. (1.45)

Для случая широкого резонанса ΓX = 1.8 ГэВ интегрирование в
(1.42) необходимо проводить численно. Получается следующий ре-
зультат:

σ(pp(γγ) → ppµ+µ−)(X) ≈ 49
ΓX→γγ

MX
пбн. (1.46)

Заметим, что распад X в фотоны может быть осуществлен и без
введения вершиныXγγ. Ограничиваясь только взаимодействием ска-
ляра с мюонами, имеем следующую треугольнуюдиаграмму Рис.1.3:
Амплитуда такого процесса есть [58]:

X

γ

γ

Рис. 1.3: Распад X через фермионную петлю.

A =
αF

4π
YXff

1

mf
XF 1

µνF
2
µν, (1.47)
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а ширина распада соответственно:

ΓX→γγ =
α2F 2

256π3
Y 2
Xff

(MX

mf

)2
MX , (1.48)

где

F = −2β[(1− β)κ2 + 1], β =
4m2

f

M 2
X

, (1.49)

κ =

arctan(
1√
β−1

), β > 1

1
2

[
i ln(1+

√
1−β

1−
√
1−β

) + π
]
, β < 1,

где YXff - константа связиX с фермионами,mf - масса фермиона бе-
гущего в петле. Для мюона получаем ΓX→γγ ≈ 10−11MX , что много
меньше полученных выше значений (1.45) и (1.46).

1.6 Численные результаты и заключение
по главе

Экспериментальная величина сечения pp(γγ) → pµ+µ−p в ин-
тересующем нас интервале 22 ГэВ < mµ+µ− < 30 ГэВ из данных
эксперимента ATLAS [41]:
dσэксп.

dmµ+µ−
= (0.076± 0.005)

пбн
ГэВ

, → σэксп. = (0.61± 0.04) пбн.

(1.50)
Приведем еще раз величину сечения того же процесса (1.31), которая
была вычислена в рамках СМ:

σ(pp(γγ) → p(µ+µ−)p) = 0.68 пбн. (1.51)

Отсюда получаем следующее ограничение на величину вклада ска-
лярного резонанса X:

σ(pp(γγ) → ppµ+µ−)(X) ≲ 0.10 пбн (1.52)
на 95 % уровне достоверности.
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Из сравнения с (1.45) для узкого резонанса получаем следующее верх-
нее ограничение:

Br(X → γγ) < 2.6× 10−2, ΓX→γγ < 46 кэВ ≈ 1.6× 10−6 MX

(1.53)
на 95 % уровне достоверности.

Для случая широкого резонанса получаем

Br(X → γγ) < 3.2× 10−2, ΓX→γγ < 58МэВ ≈ 2× 10−3 MX

(1.54)
на 95 % уровне достоверности.

Таким образом, в данной Главе на основе метода эквивалентных
фотонов было получено аналитическое выражение для дифференци-
ального сечения рождения заряженных лептонов в ультраперифери-
ческом столкновении протонов. Выведенное выражение позволяет
естественным образом наложить экспериментальные ограничения и
в логарифмическом приближении провести интегрирование анали-
тически.

При учете форм-фактора протона и фактора выживания вычис-
ление необходимо проводить численно. Было показано, что учет вы-
шеуказанных факторов приводит к более точному результату, отли-
чающемуся от вычисленного аналитически на несколько процентов.

В предположении существования скалярного резонанса было по-
лучено аналитическое выражение для сечения p(γγ)p→ pµ+µ−p че-
рез промежуточный резонанс γγ → X → µ+µ−. Для узкого резонан-
са в логарифмическом приближении результат также может быть по-
лучен аналитически. Из сравнения вычисления в рамках Стандарт-
ной Модели и экспериментального значения, мы ограничили шири-
ну распада X → γγ.
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2 Полуэксклюзивный процесс
pp→ pµ+µ−X через
фотон-фотонную аннигиляцию

В данной Главе будет рассмотрен более сложный процесс рож-
дения пары заряженных лептонов в протон-протонном столкнове-
нии, когда один из протонов ”не выживает” после столкновения
и распадается в некоторое конечное адронное состояние X . Подоб-
ный процесс наряду с уже рассмотренным в предыдущей главе ква-
зиупругим столкновением p(γγ)p → pµ+µ−p вносит вклад в сече-
ние полуэксклюзивной реакции. Следуя работе [59], амплитуда про-
цесса будет получена в спиральном базисе. Такой подход позволя-
ет факторизовать квадрат матричного элемента на неинтерферирую-
щие слагаемые с заданной поляризацией и исследовать вклад каждой
из них. Квазиупругая часть рассеяния будет вычислена также в рам-
ках приближения эквивалентных фотонов с учетом электрического
и магнитного форм-факторов. Чтобы протон разрушился, испущен-
ный фотон должен обладать достаточно большой виртуальностью,
поэтомумягкофотонное приближение здесь неприменимо. Вычисле-
ние такой неупругой части процесса будет проведено в рамках пар-
тонной модели. Как упоминалось выше, в полуэксклюзивном про-
цессе фактор выживания играет более существенную роль, что бу-
дет учтено при вычислении полного сечения. Выведенные таким об-
разом теоретические формулы для сечения будут использованы для
анализа данных эксперимента ATLAS по измерению такого полуэкс-
клюзивного процесса, когда один из протонов попадает в передний
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детектор [42]. Будет получено окончательное численное значение
для сечения процесса p(γγ)p → pµ+µ−X с учетом эксперименталь-
ных ограничений.

Ниже индекс (1) отвечает фотону, испущенному квазиупруго рас-
сеяннымпротоном, а индекс (2) отвечает фотону, испущенному квар-
ком. В данной Главе переменная s отвечает квадрату энергии стал-
кивающихся протонов в системе центра инерции.

Данная Глава написана на основе работ [60] и [61]. Обсуждение
киральной аномалии в Главе 2.6 основано на работе [62]

2.1 Кинематические ограничения на
конечный фазовый объем

Как уже отмечалось аналитические выражения, полученные в дан-
ной Главе, будут применяться для анализа данных коллаборации
ATLAS [42]. В эксперименте измерялся процесс рождения пары за-
ряженных лептонов в столкновении протонов с энергией в системе
центра инерции протонов

√
s = 13 ТэВ через фотон-фотонную анни-

гиляцию. При этом один из протонов регистрировался передним де-
тектором (ATLAS Forward Proton spectrometer), то есть испытал ква-
зиупругое рассеяние. Это приводит к дополнительному подавлению
фазового объема, наряду с ограничениями по инвариантной массе
мюонной пары, поперечному импульсу и псевдобыстроте лептона,
которые были рассмотрены в Главе 1. Знание характерных и допу-
стимых величин энергий и импульсов частиц в эксперименте поз-
воляет сделать определенные приближения и тем самым упростить
аналитические выражения. Перейдем к соответствующим оценкам.

Нас будут интересовать мюоны. Выпишем соответствующие огра-
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ничения на фазовый объем мюонной пары:

20 ГэВ < W < 70 ГэВ, W > 105 ГэВ (2.1)
p(1,2),T > p̂T = 18 ГэВ,
pµµT < p̂µµT = 5 ГэВ,
|η(1,2)| < η̂ = 2.47,

0.035 < ξ < 0.08

гдеW - инвариантная масса мюонной парыW 2 = (k1 + k2)
2, k(1,2) -

четырехимпульс мюона, p(1,2),T - поперечный импульс и η(1,2) - псев-
добыстрота мюона, pµµT = |p⃗1T + p⃗2T | - поперечный импульс пары, ξ
- потеря энергии протона на излучение.

Начнем с последнего ограничения на попадание квазиупруго рас-
сеянного протона в передний детектор. Величина ξ дается формулой:

ξ± =
E − E ′

E
=
W√
s
e±y, (2.2)

где ± отвечает попаданию протона в передний детектор со сторо-
ны, отвечающий положительному (сторона A) или отрицательному
(сторона C) направлению оси пучка соответственно, E и E ′ - энер-
гии протона, попавшего в передний детектор, до и после излучения.
Величина y - быстрота пары мюонов определяется как

yi =
ϵ1 + ϵ2 + p1,z − p2,z
ϵ1 + ϵ2 − p1,z + p2,z

, (2.3)

где ϵi - энергия i-го мюона, pi,z - компонента его импульса вдоль оси
z, которая определяется как ось столкновения протонов. Подчерк-
нем, что быстрота не является лоренц-инвариантной величиной и
определяется в лабораторной системе, то есть системе центра инер-
ции сталкивающихся протонов. Присвоим индекс 1 протону, кото-
рый попадает в передний детектор со стороны A, а индекс 2 - тому,
который попадает со стороны C. Тогда с учетом E(1,2) −E ′

(1,2) = ω1,2

из (2.2) нетрудно получить следующее соотношение:

y =
1

2
ln
ω1

ω2
. (2.4)
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Таким образом, мы имеем ограничения на энергию фотона, излучен-
ного протоном:

227 ГэВ ≡ ωmin < ω1 < ωmax ≡ 520 ГэВ. (2.5)

Перейдем к остальнымограничениям. Вырезанная область по ин-
вариантной массе пары 70 ГэВ < W < 105 ГэВ исключает резо-
нансный вклад Z бозонов. С учетом W > 20 ГэВ ≫ mµ мы можем
считать мюоны ультрарелятивистскими. Верхнее ограничение на pT
дается следующим равенством:

W 2 = (k1 + k2)
2 > 2k1k2 > 4p2T → pT <

W

2
. (2.6)

Ограничения по псевдобыстроте мюона переводятся в ограничения
по быстроте пары аналогично тому, как это было сделано в Главе 1:

ŷ = η̂ +
1

2
ln

1−
√

1− 4p2T/W
2

1 +
√
1− 4p2T/W

2
, (2.7)

где дополнительно следует потребовать pT > W/2 cosh η̂, чтобы ŷ >
0. Однако теперь имеется дополнительное ограничение по быстроте,
вытекающее из формулы (2.4) и неравенства (2.5). Отсюда вытекают
следующие дополнительные пределы по быстроте:

ỹ = lnmax
(
2ω1,min

W
,

W

2ω2,max

)
, (2.8)

Ỹ = lnmin
(
2ω1,max

W
,

W

2ω2,min

)
. (2.9)

Вывод этих оценок основан на формуле (2.2). Предположим, что фо-
тон с энергией ω1 излучен протоном, попавшим в передний детектор.
Тогда выбираем знак + и получаем

y = ln
ω1

√
s

WE
= ln

2ω1

W
, (2.10)
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где мы учли
√
s = 2E. Для фотона с энергией ω2, испущенного про-

тоном, попавшим в передний детектор со стороны C, необходимо
выбрать в (2.2) знак минус.

Для протона, рассеянного квазиупруго, мы имеем естественное
ограничение на виртуальность излученного фотона:

√
Q2

1 ≤ q̂2 =
(0.2 ГэВ)2. Данное ограничение уже возникало в Главе 1 при об-
суждении спектра эквивалентных фотонов. Из сравнения с (2.1) мы
можем заключить, что Q2

1 ≪ W 2, и данный фотон квазиреальный
с двумя поперечными поляризациями. Фотон, испущенный неупру-
го рассеянным протоном, может обладать большой виртуальностью,
следовательно вклад от продольной поляризации может быть более
значителен. Однако сечение γγ → µ+µ− уменьшается степенным
образом с ростом Q2

2 какW 2/Q2
2 (что будет показано ниже в данной

Главе). Более того в силу ограничения на поперечный импульс мю-
онной пары pµµT имеем

|q⃗1⊥ + q⃗2⊥| ∼ q2⊥ < p̂µµT , (2.11)

поэтому Q2
2/W

2 ≤ (pµµT )2/W 2 ≪ 1. Следовательно при сделанных
кинематических ограничениях, мы можем считать и второй фотон
квазиреальным и поперечно поляризованным.

Обсудим кварковую часть. Согласно партонной модели мы рас-
сматриваем рассеяние на свободном кварке внутри протона (валент-
ном или морском), вычисляем сечение и суммируем по всем кваркам.
Кварк q несет долю импульса протона x с вероятностью fq(x,Q

2
2).

Переменную x называют переменной Бьеркена, а функции fq(x,Q2
2)

- партонными функциями распределения. Поскольку x ∼ 1/3, то
лоренц-фактор γq = xE/mq ≫ 1 даже для морского b-кварка. По-
скольку кварки связаны внутри протона, то будем использовать кон-
ституентную массу кварка mq = mp/3 ≈ 300 МэВ. Наконец поста-
вим ограничение на энергию излученного кварком фотона ω2. Для
квадрата инвариантной массы мюонной пары имеем:

W 2 = (q21 + q22) ≈ 2q1q2 − q22 ≈ 4ω1ω2 −Q2
2, (2.12)
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где мы воспользовались тем, что q21 ≪ W 2. Далее с учетомQ2
2 ≪ W 2

имеем
ω2 ≈

W 2

4ω1
. (2.13)

С учетом (2.4) заключаем, что ω2 ≪ xE порядка нескольких ГэВ.
Приведем здесь также формулу дляQ2 фотона, испущенного как

протоном, так и кварком в лабораторной системе. Поскольку мы в
канале рассеяния, то q2 = −Q2 < 0. Поэтому в системе покоя прото-
на имеем q = (0, q⃗⊥, qz). Далее совершим буст вдоль направления z
с фактором γ = E/mp для протона или γ = xE/mq для кварка. Для
фотона в лабораторной системе (индекс 0) имеем

ω = γvqz, (2.14)
q⃗0⊥ = q⃗⊥,

q0z = γqz,

где v - скорость частицы v =
√

1− 1/γ2. Виртуальность тогда при-
нимает вид

q2 = ω2 − q20⊥ − q20z = ω2(1− 1

v2
)− q2⊥ = −ω

2

γ2
− q2⊥ ≡ −Q2. (2.15)

2.2 Сечение упругой части
полуэксклюзивного процесса

Вычислим квазиупругий вклад в полуэксклюзивный процесс. Для
этого вновь воспользуемсяметодом эквивалентныхфотонов, посколь-
ку в обоих случаях виртуальности ограничены

√
Q2

1,2 ≤ q̂. Спектр
эквивалентных фотонов, учитывающий форм-факторы в дипольном
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приближении (1.24) дается следующей формулой [61]:

np(ω) =
α

πω

{(
1 + 4u− (µ2p − 1)

u

v

)
ln
(
1 +

1

u

)
− 24u2 + 42u+ 17

6(u+ 1)2

−
µ2p − 1

(v − 1)3

[
1 + u/v

v − 1
ln
u+ v

u+ 1
−

− 6u2(v2 − 3v + 3) + 3u(3v2 − 9v + 10) + 2v2 − 7v + 11

6(u+ 1)2
,

(2.16)

где

u =

(
ω

Λγ

)2

, v =

(
2mp

Λ

)2

. (2.17)

Сечение определяется аналогично (1.16):

dσ(p(γγ)p→ pµ+µ−p)

dW
=

W/2∫
max(p̂T , W

2 cosh η̂)

dpT
dσ(γγ → µ+µ−)

dpT
dL̂
dW

,

(2.18)
гдеW =

√
ω1ω2 (формула (2.12) при Q2

2 ≈ 0),

dσ(γγ → µ+µ−)

dpT
=

8πα2

W 2pT
· 1− 2p2T/W

2√
1− 4p2T/W

2
(формула (1.16) из Главы 1),

(2.19)
а величина dL̂

dW может быть интерпретирована как фотон-фотонная
светимость:

dL̂
dW

=
W

2

min(ŷ,Ỹ )∫
max(−ŷ,ỹ)

np
(
W
2 e

y
)
np
(
W
2 e

−y
)
dy. (2.20)

Вычисление в пределах

ω1,min = ωmin, ω2,min = 0,

ω1,max = ωmax, ω2,max = ∞
(2.21)
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соответствует случаю, когда первый протон попадает в передний де-
тектор. Вычисление же в пределах

ω1,min = ωmin, ω2,min = ωmin,

ω1,max = ωmax, ω2,max = ωmax
(2.22)

соответствует случаю, когда оба протона попадают в передний де-
тектор. Чтобы вычислить интересующее нас сечение необходимо удво-
ить сечение, проинтегрированное в пределах (2.21), и вычесть сече-
ние, взятое в пределах (2.22), чтобы исключить двойной счет:

σ(p(γγ)p→ pµ+µ−p) = 2σ(p(γγ)p→ pµ+µ−p)|(2.21)− (2.23)
− σ(p(γγ)p→ pµ+µ−p)|(2.22).

Выполняя численное интегрирование по y, pT и W в пределах (2.1)
получим следующее значение сечения квазиупругого процесса [61]

σ(p(γγ)p→ pµ+µ−p) = 8.6 фб. (2.24)

2.3 Дифференциальное сечение процесса
p(γγ)q → pµ+µ−q

Прежде всего приведем основное выражение для дифференци-
ального сечения процесса неупругого рассеяния протона на кварке
с рождением мюонной пары через фотон-фотонную аннигиляцию
p(γγ)q → pµ+µ−q (Рис.2.4.) [60]

dσpq→pµ+µ−q =
Q2

q(4πα)
2

(q21)
2(q22)

2
(q21ρ

(1)
µν )(q

2
2ρ

(2)
αβ)MµαM

∗
νβ× (2.25)

× (2π)4δ(4)(q1 + q2 − k1 − k2)dΓ

4
√
(p1p2)2 −m4

p

d3p′1
(2π)32E ′

1

d3p′2
(2π)32E ′

2

,

где α - постоянная тонкой структуры,Qq - электрический заряд квар-
ка q, ρ(1) и ρ(2) - матрицы плотности фотонов,Mµα - амплитуда про-
цесса аннигиляции γγ → µ+µ−, p1, p

′

1, p2, p
′

2 - четыре-импульсы
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протона и кварка до и после столкновения соответственно, E ′

1, E
′

2

- энергии протона и кварка в конечном состоянии, dΓ - фазовый объ-
ем мюонной пары и mp - масса протона. Данное выражение может
быть получено напрямую по стандартным правилам. Действитель-
но, выражение для дифференциального сечения записывается в об-
щем виде как

dσ =
1

4I

∑
|A|2dV4, (2.26)

где A - амплитуда рассматриваемого процесса, dV4 - четырехчастич-
ный фазовый объем конечной системы pµ+µ−q, а I - инвариант Мел-
лера, описывающий поток начальных частиц, равный по определе-
нию:

I =
√

(p1p2)2 − p22p
2
1. (2.27)

Четырехчастичный фазовый объем можно представить в виде, кото-
рый представлен в формуле (2.25):

dV4 = (2π)4δ(4)(q1 + q2 − k1 − k2)dΓ
d3p′1

(2π)32E ′
1

d3p′2
(2π)32E ′

2

. (2.28)

Мы явно выделили часть, отвечающую протон-кварковой подсисте-
ме и часть, соответствующую мюонной подсистеме.

Для вывода оставшейся динамической части сечения (2.25) вос-
пользуемся диаграммной техникой Фейнмана и запишем амплитуду
процесса A в виде::

A = −ie2jpµ
1

q21
Mµν

γγ→µ+µ−
1

q22
jqν , (2.29)

где e2 = 4πα. Протонный и кварковый токи jpµ и jqν есть:

jpµ = ū(p′1)Γµ(q
2
1)u(p1), (2.30)

jqν = Qqū(p
′
2)γνu(p2), (2.31)

где Γµ(q
2
1) - вершинная функция (1.21), учитывающая форм-факторы

протона, то есть внутреннюю структуру, u(p′i), u(pi) - биспинорные
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Рис. 2.4: Рождение лептонной пары в полуэксклюзивном процессе

волновые функции протона и кварка до и после рассеяния, ū = γ0u†.
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Амплитуда аннигиляции фотонов в мюоныMµν:

Mµν = ū(k1)γµ
e2

k̂1 − q̂1 −mµ

γνv(k2) + ū(k1)γν
e2

k̂1 − q̂2 −mµ

γµv(k2),

(2.32)
гдеmµ - масса мюона и для четырехвектора aµ использовано обозна-
чение â = γµa

µ. Функции u(k1), v(k2) - биспинорные волновые функ-
ции мюона и антимюона соответственно. Сумма появляется вслед-
ствие наличия двух диаграмм, отличающихся перестановкой фото-
нов. Далее квадрируем амплитуду, усредняя по поляризациям на-
чальных протона и кварка и суммируя по поляризациям конечных
протона, кварка и мюонов:∑

|A|2 = e4
1

2(q21)
2

∑
jpµ(j

p
α)

† 1

2(q22)
2

∑
jqν(j

q
β)

†× (2.33)

×
∑

Mµν(Mαβ)†,

где знак
∑

отвечает суммированию по соответствующим поляри-
зациям. Суммы по поляризациям от произведений токов протона и
кварка определяют матрицы плотности излученных фотонов.

41



2.4 Матрица плотности ρ(2)µν фотона,
излученного кварком

Получим сначала соответствующее выражение для бесструктур-
ного кварка:

ρ(2)µν ≡ −
∑

jqµ(j
q
ν)

† = − 1

2q22
Sp{(p̂′2 +mq)γµ(p̂2 +mq)γν} = (2.34)

= − 2

q22
(p′2µp2ν + p′2νp2µ − gµν(p

′
2p2) +m2

qgµν) =

= −gµν +
q2µq2ν
q22

− 2

q22
(2p2µp2ν − q2µp2ν − q2νp2µ +

q2µq2ν
2

) =

= −
(
gµν −

q2µq2ν
q22

)
− (2p2 − q2)µ(2p2 − q2)ν

q22
.

При выводе было использовано, что p2−p′2 = q2 и p22 = p′22 = m2
q, где

mq - масса кварка. Проверим условие поперечности по отношению
к четырехимпульсу фотона q2µ:

q2µρ
(2)
µν = −0− (2p2q2 − q22)(2p2 − q2)ν

q22
= 0, (2.35)

так как
2p2q2 = −(p2 − q2)

2 +m2
q + q22 = q22. (2.36)

Стоит отметить, что результаты полученные в (2.34) и (2.35) не зави-
сит от того, токовая или конституентная масса у кварка. Нормировка
дается следом:

ρµ(2)µ = −3−
4m2

q − 4p2q2 + q22
q22

= −2 +
4m2

q

q22
≈ −2, (2.37)

в приближенииm2
q ≪ q22.

Полученное выражение удовлетворяет условиям дляматрицыплот-
ности фотона с четырехимпульсом q2µ. Поэтому мы можем разло-
жить выражение (2.34) по базисным векторам поляризации фотона.
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Приведем их вид в системе центра инерции сталкивающихся фото-
нов, где их четырехимпульсы есть q1 = (ω̃1, 0, 0, q̃1) и q2 = (ω̃2, 0, 0,−q̃1):

e
(1)
+µ =

1√
2
(0,−1,−i, 0), e(1)−µ =

1√
2
(0, 1,−i, 0), (2.38)

e
(1)
0µ =

i√
−q21

(q̃1, 0, 0, ω̃1),

e
(2)
+µ =

1√
2
(0, 1,−i, 0), e(2)−µ =

1√
2
(0,−1,−i, 0),

e
(2)
0µ =

i√
−q22

(−q̃1, 0, 0, ω̃2),

где q̃1 - проекция импульса фотона на ось их столкновения, ω̃1, ω̃2 -
энергии фотонов. Поскольку фотоны виртуальные (q21,2 ̸= 0), то их
энергии не равны в системе центра инерции. Аргументы в скобках
отвечают спиральностямфотонов:±1 соответствует поперечнымпо-
ляризациям, а 0 - продольной. Легко убедиться, что векторы поляри-
зации ортогональны и нормированы условием |e(2)± |2 = −1, |e(2)0 |2 =
+1. Искомое разложение матрицы плотности по векторам поляриза-
ции имеет тогда следующий вид:

ρ(2)µν =
∑
a,b

[e(2)aµ ]
∗e

(2)
bµ ρ

(2)
ab , a,b = ±1,0,

ρ
(i)
ab = (−1)a+be(i)aµ[e

(i)
bν ]

∗ρ(i)µν. (2.39)

Коэффициенты ρ(2)ab в разложении (2.4) соответствуютматрицам плот-
ности в спиральном базисе.

Приступим к вычислению величин ρ(2)ab . Начнем с поперечных по-
ляризаций без интерференции ρ(2)++, ρ

(2)
−−. Для этого рассмотрим их

вид в системе центра инерции сталкивающихся фотонов, в которой
мы выписали вектора поляризации (2.38):

ρ
(2)
++ = e

(2)
+µ[e

(2)
+ν]

∗ρ(2)µν = 1 + 0− 4|p2e(2)+ )|2

q22
= 1 +

2

q22
p22⊥, (2.40)
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где мы воспользовались ортогональностью вектора поляризации к
четырехимпульсу фотона qµ2 e

(2)
µ (+) = 0 и p2⊥ - поперечная компо-

нента импульса кварка в системе центра инерции сталкивающихся
фотонов. Легко понять, что ρ(2)++ = ρ

(2)
−−. Далее перейдем к инвари-

антному выражению для спиральной матрицы плотности. Для это-
го сконструируем симметричный тензор второго ранга, определяю-
щий ортогональное к q1, q2 подпространство. В самом общем виде
его можно записать как:

Rµν(q1, q2) = −gµν + A(qµ1 q
ν
2 + qν1q

µ
2 ) + Bqµ1 q

ν
2 + Cqν1q

µ
2 . (2.41)

Коэффициенты A, B и C зависят только от квадратов q21 и q22 и мо-
гут быть определены из соотношений ортогональности q1µq1νRµν =
q2µq2νR

µν = q1µq2νR
µν = 0:

−q1q2 + A(q21q
2
2 + q1q2) + Bq21(q1q2) + Cq22(q1q2) = 0

−q21 + 2Aq21(q1q2) + B(q21)
2 + C(q1q2)

2 = 0

−q22 + 2Aq22(q1q2) + C(q22)
2 +B(q1q2)

2 = 0.

Решение данной системы уравнений приводит к следующей тройке
коэффициентов:

A =
q1q2

(q1q2)2 − q21q
2
2

, B = − q21
(q1q2)2 − q21q

2
2

, C = − q22
(q1q2)2 − q21q

2
2

.

(2.42)
Таким образом, окончательный вид тензора Rµν есть [59]:

Rµν(q1, q2) = −gµν+(q1q2) · (qµ1 qν2 + qν1q
µ
2 )− q21q

µ
2 q

ν
2 − q22q

µ
1 q

ν
1

(q1q2)2 − q21q
2
2

. (2.43)

Тот факт, что при метрическом тензоре gµν в (2.41) стоит коэффици-
ент −1 приводит к следующему условию нормировки:

RµνRµν = 2. (2.44)
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Поперечная компонента импульса кварка pµ2⊥ = −Rµνp2ν . Квадрат
поперчного импульса будет иметь вид:

p22⊥ = m2
q + 2

2(q1q2)(p2q2)(p2q1)− q21(q2p2)
2 − q22(p2q1)

2

(q1q2)2 − q21q
2
2

+ (2.45)

+
2(q1q2)

3(q2p2)(q1p2)− (q1q2)
2(q21(q1p2)

2 + q22(q1p2)
2)−

((q1q2)2 − q21q
2
2)

2

−2q21q
2
2(q1q2)(q2p2)(q1p2) + q41q

2
2(q2p2)

2 + q42q
2
1(q1p2)

2

((q1q2)2 − q21q
2
2)

2
.

Это довольно громоздкое выражение существенно упрощается после
приведения к общему знаменателю второго и третьего слагаемого и
с учетом 2p2q2 = q22:

p22⊥ = m2
q +

q22
4((q1q2)2 − q21q

2
2)

2
(−4(q1q2)

3(q1p2) + 4q21q
2
2(q1q2)(q1p2)+

(2.46)
+ q21q

2
2(q1q2)

2 + 4(q1q2)
2(q1p2)

2 − q41q
4
2 − 4q22q

2
1(q1p2)

2).

Выделяя полные квадраты в этом выражении и подставляя в (2.40)
окончательно получаем:

ρ
(2)
++ = 1 + 2

m2
q

q22
+

1

2((q1q2)2 − q21q
2
2)

2
(((q1q2)

2 − q21q
2
2)× (2.47)

× (2(q1p2)− q1q2)
2)− ((q1q2)

2 − q21q
2
2)

2) =

=
1

2
+

2m2
q

q22
+

1

2
· (2p2q1 − q1q2)

2

(q1q2)2 − q21q
2
2

.

Это выражение может быть далее упрощено в лабораторной системе,
в которой

q21q
2
2 ≪ (q1q2)

2 ≈ 2ω1ω2 ≪ xE2 (2.48)
p2q1 = 2xEω1.
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Окончательно имеем

ρ
(2)
++ = 2

[m2
q

q22
+
x2E2

ω2
2

]
= 2x2E2

(
− 1

γ2qq
2
2⊥ + ω2

2

+
1

ω2
2

)
= 2

x2E2q22⊥
ω2
2Q

2
2

,

(2.49)
где мы воспользовались соотношением (2.15).

Выражение для ρ(2)−− полностью совпадает с ρ(2)++.

2.5 Матрица плотности ρ(1)µν фотона,
излученного квазиупруго рассеянным
протоном

В отличие от кварка протон обладает внутренней структурой, по-
этому в вершине электромагнитного взаимодействия Γµ(q

2) стоят
форм-факторы (1.21).Матрица плотности испущенного протономфо-
тона определяется аналогично (2.34):

ρ(1)µν ≡ −
∑

jpν(j
p
β)

†. (2.50)

С учетом (2.30) и (1.21) получим

ρ(1)µν = − 1

2q21
Sp
(
(p̂′1 +mp)

(
F1(q

2
1)γ

µ + F2(q
2
1)
σµαqα1
2mp

)
× (2.51)

× (p̂1 +mp)

(
F1(q

2
1)γ

ν − F2(q
2
1)
σναqα1
2mp

))
.

Вычислим данный след. Он естественным образом разбивается на
три слагаемых:

−2q21ρ
(1)
µν = F 2

1 (q
2
1)ρ

(1)
1µν +

F1(q
2
1)F2(q

2
1)

2mp
ρ
(1)
2µν −

F 2
2 (q

2
1)

4m2
p

ρ
(1)
3µν, (2.52)
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где мы ввели:

ρ
(1)
1µν = Sp ((p̂′1 +mp)γ

µ(p̂1 +mp)γ
ν) , (2.53)

ρ
(1)
2µν = qα1Sp

(
(p̂′1 +mp)σ

µα(p̂1 +mp)γ
ν − (p̂′1 +mp)γ

µ(p̂1 +mp)σ
να
)
,

ρ
(1)
3µν = qα1 q

β
1Sp

(
(p̂′1 +mp)σ

µα(p̂1 +mp)σ
νβ
)
.

Первое и самое простое слагаемое ρ(1)1µν с точностью дофактораF 2
1 (q

2
1)

аналогично (2.34):

F 2
1 (q

2
1)ρ

(1)
1µν = −F 2

1 (q
2
1)

(
gµν −

q1µq1ν
q21

)
− F 2

1 (q
2
1)
(2p1 − q1)µ(2p1 − q1)ν

q21
.

(2.54)

Для вычисления второго слагаемого прежде всего заметим, что

Sp(p̂′1σ
µαp̂1γ

ν) = m2Sp(σµαγν) = 0, (2.55)

так как количество гамма-матриц под следом нечетно. Далее вос-
пользуемся тем, что

σµν = γµγν − gµν, (2.56)

и известными соотношениями для следов от четного числа гамма-
матриц:

Sp(γµγν) = 4gµν, (2.57)
Sp(γµγνγαγβ) = 4(gµνgαβ + gµβgνα − gµαgνβ),

и получим следующее выражение для второго слагаемого ρ(1)2µν:

ρ
(1)
2µν = 4mq1α(2q

α
1 g

µν − qµ1 g
να − qν1g

µα). (2.58)

Мы учли также, что p1 − p′1 = q1. Окончательно имеем

F1(q
2
1)F2(q

2
1)

2mp
ρ
(1)
2µν = 4F1(q

2
1)F2(q

2
1)(q

2
1g

µν − qµ1 q
ν
1). (2.59)
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Перейдем к третьему и самому сложному слагаемому. Снова вос-
пользуемся тем, что след нечетого числа гамма-матриц равен нулю:

mSp(p̂′1σ
µασνβ) = mSp(σµαp̂1σ

νβ) = 0. (2.60)

Далее снова воспользуемся (2.56):

Sp
(
(p̂′1 +mp)σ

µα(p̂1 +mp)σ
νβ
)
=Sp(p̂′1(γ

µγα − gµα)p̂(γνγβ − gνβ)+
(2.61)

+m2(γµγα − gµα)(γνγβ − gνβ)).

След от двух и четырех гамма-матриц берется с помощью формул
(2.57). След же от шести гамма-матриц возьмем с помощью анти-
коммутационного соотношения

γµγν = 2gµν − γνγµ, (2.62)

и соотношения q̂1q̂1 = q21:

qα1 q
β
1Sp(p̂

′
1γ

µγαp̂γνγβ) =Sp(2qν1 p̂
′γµq̂1p̂1 − 2(q1p1)p̂

′
1γ

µq̂1γ
ν+ (2.63)

+ q21p̂
′
1γ

µp̂1γ
ν).

Собирая все слагаемые вместе и приводя подобные члены получим

ρ
(1)
3µν = 4

(
2(q1p1)(p

′
1q1)g

µν + qν1q
µ
1 (p

′
1p1)− qν1p

′µ
1 (q1p1)− qν1p

µ
1(q1p

′
1)−
(2.64)

− qµ1p
′ν
1 (q1p1)− qµ1p

ν
1(q1p

′
1) + q21(p

′µ
1 p

ν
1 + p

′ν
1 p

µ
1 − (p1p

′
1)g

µν)+

+m2(qµqν − q2gµν)
)
.

Далее учтем, что p1 − p′1 = q1 и 2p1q1 = q21, и после алгебраических
преобразований выпишем окончательное выражение для ρ(1)3µν:

ρ
(1)
3µν = 2

(
q21(2p1 − q1)

µ(2p1 − q1)
ν + 4m2(qµ1 q

ν
1 − q21g

µν)
)
. (2.65)

48



Соберем все слагаемые вместе:

ρ(1)µν =−
(
F 2
1 (q

2
1) + 2F1(q

2
1)F2(q

2
1) + F 2

2

)(
gµν − qµ1 q

ν
1

q21

)
− (2.66)

−
(
F 2
1 (q

2
1)−

q21
4m2

p

F 2
2 (q

2
1)
)((2p1 − q1)µ(2p1 − q1)ν

q21

)
.

Вспоминая определения форм-факторов Сакса (1.23) и вводя вновь
(см. Главу 1) величину

τ = −q21/4m2
p = Q2

1/4m
2
p, (2.67)

имеем:

ρ(1)µν = −G2
M(Q2

1)
(
gµν − qµ1 q

ν
1

q21

)
−D(Q2

1)
((2p1 − q1)µ(2p1 − q1)ν

q21

)
,

(2.68)
где мы определили D(Q2

1) следующим образом:

D(Q2
1) =

G2
E(Q

2
1) + τG2

M(Q2
1)

1 + τ
. (2.69)

Абсолютно аналогично тому, как было выведено соотношение
(2.40), мы получим выражение для матрицы плотности фотона, из-
лученного квазиупруго рассеянным протоном, в спиральном базисе
ρ
(1)
++:

ρ
(1)
++ = G2

M +
2p21⊥
q21

D(Q2
1), (2.70)

где p1⊥ - компонента импульса протона, ортогональная импульсу фо-
тона q1 в системе центра инерции сталкивающихся фотонов. Выра-
жение для квадрата поперечной компоненты импульса (2.45) остает-
ся для протона таким же, как и для кварка, с точностью до замены у
всех четырехимпульсов индекса 2 на 1. Вспоминая вывод выражения
(2.47), несложно получить инвариантное выражение для ρ(1)++:

ρ
(1)
++ = G2

M(Q2
1) +D(Q2

1)

[
2m2

p

q21
+

1

2

(
(2p1q2 − q1q2)

2

(q1q2)2 − q21q
2
2

− 1

)]
. (2.71)
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В приближении ω1 ≪ E и ω2 ≪ xE имеем

ρ++
1 = G2

M(Q2
1)+2D(Q2

1)

[
m2

p

q21
+

(
E

ω1

)2
]
≈ D(Q2

1) ·
2E2q21⊥
ω2
1Q

2
1

, (2.72)

аналогично тому, как было получено выражение (2.49).
Как и в кварковом случае выражение для ρ(1)−− полностью совпа-

дает с ρ(1)++.

2.6 Амплитуды γγ → µ+µ− в спиральном
представлении

Как видно из формулы (2.25) матрицы плотности свертываются
с амплитудамиMµα процесса γγ → µ+µ−. Разложение матриц плот-
ности по базису векторов поляризации фотонов (2.4) одновремен-
но определяет разложение амплитуд по состояниям с определенной
спиральностью:

ρ(1)µν ρ
(2)
αβMµαM

∗
νβ = (−1)a+b+c+dρ

(1)
ab ρ

(2)
cd MacM

∗
bd. (2.73)

Как было сказано выше, вклад от продольных поляризаций фото-
нов подавлен в используемых коллаборацией ATLAS кинематиче-
ских ограничениях на фазовый объем. Поэтому остаются только два
типа вкладов: с одинаковой поляризацией±± и интерференционные
±∓.

Покажем, что интерференционные слагаемые в данном выраже-
нии не будут давать вклад в конечное выражение для сечения, что
является несомненным преимуществом подхода к вычислению мат-
ричных элементов в спиральном базисе [59, 63]. Таких слагаемых
два вида: ρ(1,2)±∓ . Без ограничения общности приведем результаты для
кваркового случая: из (2.68) и (2.71) видно, что в случае протона от-
личие лишь в коэффициентах, поэтому сделанное утверждение оста-
ется в силе и в этом случае. Аналогично вычислению, приведшему
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к формуле (2.40), получаем:

ρ
(2)
+− = ρ

(2)
−+ = 0 +

4

q22
(p2e

(2)
+ )2 =

4

q22
p22⊥e

2iϕ2, (2.74)

где мы воспользовались взаимной ортогональностью векторов поля-
ризации e(2)+µe

(2)∗
−µ = 0 и e(2)∗−µ = −e(2)+µ. Азимутальный угол ϕ2 - угол

между плоскостями рассеяния кварка и двухфотонного столкнове-
ния. В окончательном выражении для сечения (2.25) необходимо вы-
полнить интегрирование по фазовому объему кварка, в который вхо-
дит интегрирование по азимутальному углу в интервале [0,2π]. Ин-
тегралы от соответствующих экспонент (2.74) по такому интервалу
дадут ноль, что и доказывает сделанное выше утверждение о зану-
лении интерференционных слагаемых.

Таким образом, остались вклады амплитуд процесса γγ → µ+µ−

для следующих поляризаций: M++, M−− и M±∓. Выражение (2.73)
тогда принимает следующий вид:

ρ
(1)
++ρ

(2)
++|M++|2 + ρ

(1)
++ρ

(2)
−−|M+−|2 + ρ

(1)
−−ρ

(2)
++|M−+|2 + ρ

(1)
−−ρ

(2)
−−|M−−|2.

(2.75)
Перейдем к вычислению соответствующих квадратов амплитуд γγ →
µ+µ−. Начнем с амплитудыM++:

M++ = e
(1)
+µe

(2)
+νMµν = e2ū(k1)ê

(1)
+

k̂1 − q̂1 +mµ

(k1 − q1)2 −m2
µ

ê
(2)
+ v(k2) (2.76)

+ e2ū(k1)ê
(2)
+

k̂1 − q̂2 +mµ

(k1 − q2)2 −m2
µ

ê
(1)
+ v(k2),

где выражение дляMµν дается формулой (2.32). Далее воспользуем-
ся антикоммутационным соотношением для гамма-матриц (2.62) и
уравнением Дирака в числителе и соотношением k21 = m2

µ для мюо-
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на на массовой оболочке в знаменателе:

M++ = e2ū(k1)
2k1e

(1)
+ − ê

(1)
+ q̂1

q21 − 2k1q1
ê
(2)
+ v(k2)+ (2.77)

+ e2ū(k1)
2k1e

(1)
+ − ê

(1)
+ q̂2

q22 − 2k1q2
ê
(1)
+ v(k2).

Далее необходимо просуммировать по поляризациям мюонов квад-
рат модуля матричного элемента. В результате возникнет выражение
следующего вида:

|M++|2 = e4
[ I1
4(k1q1)2

+ 2
I2

4(k1q1)(k1q2)
+

I3
(q22 − 2k1q2)2

]
, (2.78)

где I1, I2 и I3 - следы гамма-матричных выражений, происходящие от
суммирования по поляризациям квадрата модуля выражения (2.77).
Все три слагаемых в выражении (2.78) даются похожими следами.
Рассмотрим I1. Будем работать в системе центра инерции мюонов.
Имеем

I1 = Sp
[
(k̂1 +mµ)(2k1e

(1)
+ − ê

(1)
+ q̂1)ê

(1)
− (k̂2 +mµ)ê

(1)
+ × (2.79)

× (2k1e
(1)
− − q̂1ê

(1)
− )
]
,

где мы использовали, что e(2)∗+µ = −e(1)+µ, e
(1)∗
+µ = −e(1)−µ. Следы от че-

тырех гамма-матриц вычисляются по известным формулам (2.57).
След от шести и восьми гамма-матриц сводится к следу от четырех
cледующим образом. Для шести гамма-матриц имеем

Sp[k̂1ê
(1)
+ q̂1ê

(1)
− k̂2ê

(1)
+ ] = (2.80)

= 2(k1e
(1)
+ )Sp[ê

(1)
+ q̂1ê

(1)
− k̂2]− [e

(1)
+ ]2Sp[k̂1q̂1ê

(1)
− k̂2] = −8(k1e

(1)
+ )(q1k2),

где учтено, что ê(1)+ ê
(1)
+ = (e

(1)
+ )2 = 0, (e(1)+ e

(1)
− ) = 1 и q1e(1)± = 0. Для

восьми гамма-матриц поступаем аналогично:

Sp[k̂1ê
(1)
+ q̂1ê1−k̂2ê1+q̂1ê

(1)
− ] = −2(k1q1)Sp[ê

(1)
+ q̂1ê

(1)
− k̂2ê

(1)
+ ê

(1)
− ]+ (2.81)

+ q21Sp[ê
(1)
+ ê

(1)
− k̂2ê

(1)
+ ê

(1)
− ] = −4(k1q1)Sp[q̂1ê

(1)
− k̂2ê

(1)
+ ] = 16(k1q1)(q1k2),
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где применено q21 ≈ 0. В итоге получаем следующее выражение

I1
16

=(k1e
(1)
+ )(k1e

(2)
+ ))

[
(k1e

(1)
+ )(k2e

(1)
+ ) + (k1e

(2)
+ )(k2e

(1)
+ )− k1k2 −m2

µ

]
+

(2.82)
+ (q1k1)(q1k2) + 2(k1e

(1)
+ )(k1e

(2)
+ )(k2q1).

В системе центра инерции мюонной пары для четырехимпульсов
мюонов имеем

k1 = (ϵ, k cosϕ sin θ, k sinϕ sin θ, k sin θ), (2.83)
k2 = (ϵ,−k cosϕ sin θ,−k sinϕ sin θ,−k sin θ),

где ϵ и k - энергия и трехмерный импульс мюона, ϕ и θ - азимуталь-
ный и полярный углы в сферической системе координат. Четырехим-
пульсы фотонов имеют вид

q1 = (q̃1, 0, 0, q̃1), q2 = (ω̃2, 0, 0,−q̃1), (2.84)

а вектора поляризации представляются в виде (2.38). Скалярные про-
изведения имеют вид

k1e
(1)
± = ± 1√

2
k sin θe±iϕ, k2e

(1)
± = ∓ 1√

2
k sin θe±iϕ, (2.85)

k1k2 ≈ 2ϵ2, k1q1 = ϵq(1− v cos θ), k1q2 = ϵω2 + kq cos θ,

где мы ввели v =
√
1−m2

µ/ϵ
2. Тогда для I1 получаем

I1 = 8ϵ2 sin2 θ(ϵ2(1 + cos2 θ) + 2ϵq(1 + v cos θ)) + 8q2(1− v2 cos2 θ)).
(2.86)

В инвариантном виде входящие в (2.85) величины записываются как

ϵ =
W

2
, q =

W 2 +Q2
2

2W
. (2.87)
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После выполнения тригонометрических преобразований и приведе-
ния подобных слагаемых придем к следующему результату для I1:

I1
8

= v2 sin2 θ
[
1− v2 + (1 + v cos θ)2 + 2

Q2
2

W 2
(1 +

Q2
2

W 2
+ v cos θ)

]
+

(2.88)

+ 2(1 +
Q2

2

W 2
)(1− v2).

Аналогично вычисляются I2 и I3:

I2
8

= −v2 sin2 θ(v2 sin2 θ + 2
Q2

2

W 2
), (2.89)

I3
8

= v2 sin2 θ
[
1− v2 + (1− v cos θ)2 + 2

Q2
2

W 2
(1 +

Q2
2

W 2
− v cos θ)

]
+

(2.90)

+ 2(1 +
Q2

2

W 2
)(1− v2).

Видно, что I1 отличается от I3 заменой θ → −θ. После подстановки
полученных выражений для следов в (2.78) и выполнения очередных
алгебраических преобразований получим окончательно

|M++|2 =
8e4

(1 +Q2
2/W

2)2(1− v2 cos2 θ)2
(2.91)[

Q4
2/W

4v2 sin2 θ + (1− v2)(1 +Q2
2/W

2)2
]
(1 + v2 cos2 θ)+

+ (1− v2)v2 sin2 θ.

Квадрат матричного элемента |M−−|2 дается точно таким же выра-
жением.

Обсудим интересный эффект, который проявляется именно в та-
кой спиральной конфигурации и может быть наблюден на экспери-
менте. Для этого перепишем полученную формулу (2.91), выделяя
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слагаемые с разной угловой зависимостью:

|M++|2 = 4e4
{
sin2 θ

Q4
2/W

4

(1 +Q2
2/W

2)2

[ 1

(1− v cos θ)2
+

1

(1 + v cos θ)2
]

(2.92)

+
1− v2

(1− v cos θ)2
+

1− v2

(1 + v cos θ)2
}
.

Спиральность начального состояния двух фотонов равна нулю. В
случае безмассовых мюонов спиральность была бы строго равна±1.
Поэтому в квантовой электродинамике с безмассовыми фермионами
амплитуда рассеяния на угол 0 и π занулялась бы в силу закона со-
хранения спиральности. Фактор sin2 θ перед квадратными скобками
обеспечивает это:

lim
m→0

sin2 θ
1

(1− v cos θ)2
|θ=0 =

W 2

4m2
µ

sin2 θ|θ=0 = 0. (2.93)

Поскольку мюон массивный, то за счет переворота спина спираль-
ность мюонной пары может обратиться в 0. Тогда процесс при θ =
0, π возможен. Этому соответствуют два последних члена в фигур-
ных скобках. Однако более внимательный анализ показывает, что эти
два слагаемых не зануляются при рассеянии вперед-назад и в безмас-
совом пределе:

lim
m→0

1− v2

(1− v cos θ)2
|θ=0 = lim

m→0

4m2
µ/W

2

(1−
√

1− 4m2
µ/W

2)2
= 1. (2.94)

Таким образом мы получим конечный вклад в полное сечение при
интегрировании по углам от областей θ ∼ m

W и θ ∼ π − m/W . Это
проявление так называемой киральной аномалии [64,65]. Напомним
ее суть. Рассмотрим аксимально-векторный ток J5

µ, получаемы по
теореме Нётер из классического лагранижиана:

J5
µ(x) = ψ̄(x)γµγ

5ψ(x), (2.95)
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гдеψ(x) - биспинор, описывающиймюон. В киральном пределе (mµ →
0) наряду с векторным током сохраняется и аксиально-векторный
ток. Действительно:

∂µJ
5
µ(x) = 2mµψ̄(x)γ

5ψ(x). (2.96)

Данное соотношение нарушается после квантования петлевыми по-
правками, что и приводит к возникновению так называемой кираль-
ной аномалии:

∂µJ
5
µ(x) ∼ αFαβF̃

αβ, mµ → 0, (2.97)

где α - постоянная тонкой структуры, F , F̃ - тензор электромагнит-
ного поля и дуальный к нему соответственно. В нашем процессе этот
эффект проявляется в том, что даже в безмассовом пределе рождение
мюонов при θ = 0, π разрешено.

Перейдем к амплитуде рождения пары в аннигиляции фотонов с
противоположными поляризациямиM+−:

M+− = e2ū(k1)
2k1e

(1)
+ − ê

(1)
+ q̂1

q21 − 2k1q1
ê
(2)
− v(k2)+ (2.98)

+ e2ū(k1)
2k1e

(2)
− − ê

(2)
− q̂2

q22 − 2k1q2
ê
(1)
+ v(k2).

Вычисление значительно упростится, если заметить, что

ê
(1)
+ q̂1ê

(2)
− = −q̂1̂[e(1)+ ]2 = 0, (2.99)

где мы воспользовались антикоммутативностью гамма-матриц (2.62).
В результате имеем

M+− = 2(k1e
(1)
+ )e2ū(k1)ê

(1)
+ v(k2)

[ 1

−2k1q1
+

1

q22 − 2k1q2

]
. (2.100)

Выполняя аналогичные вычисления, которые привели к выражению
(2.91) получим для квадрата амплитуды

|M+−|2 =
8e4v2 sin2 θ

(1− v2 cos2 θ)2(1 +Q2
2/W

2)2

[
2− v2 + v2 cos2 θ

]
. (2.101)
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Укажем, что |M+−|2 = |M−+|2. Мы можем переписать данное выра-
жение в виде, похожем на (2.92):

|M+−|2 =
2e4 sin2 θ(1 + cos2 θ)

(1 +Q2
2/W

2)2
[

1

1− v cos θ
+

1

1 + v cos θ
]2. (2.102)

Видно, что в данном случае рождение лептонов при θ = 0, π всегда
запрещено - за это снова отвечает фактор sin2 θ. Поскольку в данном
случае спиральность аннигилирующих фотонов равна двум, а спи-
ральность мюонной пары не превышает единицы, рассеяние вперед-
назад запрещено сохранением спиральности.

2.7 Вычисление сечения p(γγ)p→ pµ+µ−X

Поскольку мы работаем в рамках партонной модели, то для по-
лучения полного сечения необходимо просуммировать сечения для
отдельных кварков, проинтегрированные с партонными функциями
распределения:

dσ(p(γγ)p→ pµ+µ−X) =
∑
q

∫
dxdσ(p(γγ)q → pµ+µ−q)fq(x,Q

2
2),

(2.103)
где dσ(p(γγ)q → pµ+µ−q) определяется формулой (2.25). Интегри-
рование надо провести в пределах, указанных в Разделе 2.1. Преоб-
разуем фазовый объем протона и кварка следующим образом:

d3p′1
E ′

1

· d
3p′2
E ′

2

≈ d2q1⊥dω1

E
· d

2q2⊥dω2

xE
, (2.104)

поскольку p′i = pi − qi. С учетом (2.75) в формуле (2.25) образуется
сечение процесса γγ → µ+µ−:

σ(γγ → µ+µ−) =

∫
1

4
[|M++|2 + |M+−|2 + |M−+|2 + |M−−|2]×

(2.105)

× (2π)4δ(4)(q1 + q2 − k1 − k2)dΓ
4q1q2

,
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где фактор 1/4 отвечает усреднениюпо поляризациямфотона, а q1q2 -
потоковый фактор. Для каждой конфигурации поляризаций фотонов
имеем

σ++(γγ → µ+µ−) + σ−−(γγ → µ+µ−) = (2.106)

=
4πα2

W 2
(
1 +Q2

2/W
2
)[ Q4

2/W
4(

1 +Q2
2/W

2
)2( lnW 2

m2
µ

− 2
)
+ 1

]
,

σ+−(γγ → µ+µ−) + σ−+(γγ → µ+µ−) =

=
4πα2

W 2
(
1 +Q2

2/W
2
)3[ lnW 2

m2
µ

− 2
]
.

Мы видим, что оба сечения в пределе Q2
2 ≫ W 2 ведут себя как

σ ∼ W 2

Q2
2

ln
W 2

m2
µ

→ 0. (2.107)

Такое поведение оправдывает наше приближение Q2
2 ≪ W 2.

С учетом (2.72) и (2.49) сечение принимает следующий вид:

dσ(pq → pµ+µ−q)

≈
(
2Qqα

π

)2
q1q2
p1p2

xE2σ(γγ → ℓ+ℓ−)D(Q2
1)×

× q31⊥dq1⊥
Q4

1

dω1

ω2
1

q32⊥dq2⊥
Q4

2

dω2

ω2
2

· fq(x,Q2
2)dx, (2.108)

Видно,что сечение факторизовалось, как и в случае приближения эк-
вивалентных фотонов в Главе 1. Перейдем к новым переменным:

W 2 = 4ω1ω2 −Q2
2, (2.109)

y = ln
ω1

ω2
.

Тогда
dω1dω2 =

W

2
dWdy, (2.110)
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и для сечения получаем

dσ(pq → pµ+µ−q) ≈
2Q2

qα

π
np

(
W

2
ey
)
σ(γγ → µ+µ−) ey

q32⊥dq2⊥
Q4

2

×

(2.111)
× dWdy fq(x,Q2

2)dx,

где мы ввели спектр эквивалентных фотонов, испущенных протоном
с учетом его форм-факторов:

np(ω) =
2α

πω

∞∫
0

D(Q2)

Q4
q3⊥ dq⊥. (2.112)

Похожим образом мы можем ввести спектр эквивалентных фотонов,
испущенных кварком:

nq(ω) =
2Q2

qα

πω

1∫
ω/E

dx
pℓℓT∫
0

dq2⊥
q32⊥
Q4

2

fq(x,Q
2
2), (2.113)

где верхний предел по q2⊥ указан в (2.11). Верхний предел по x выте-
кает из смысла переменной Бьеркена: максимальный импульс квар-
ка есть полный импульс протона. Нижний предел определяется тем,
что кварк излучает фотон с энергией ω. Накладывая кинематические
ограничения из Раздела 2.2 имеем окончательно [61]

dσ(pp→ p+ ℓ+ℓ− +X)

dW
=
∑
q

W/2∫
max(p̂T , W

2 cosh η̂)

dpT
dσ(γγ → ℓ+ℓ−)

dpT
×

W

2

min(ŷ,Ỹ )∫
max(−ŷ,ỹ)

dy np
(
W

2
ey
)
nq

(
W

2
e−y

)
. (2.114)
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Чтобы учесть процесс, когда второй протон попадает в передний де-
тектор, а первый выживает, умножим выражение (2.114) на 2.

Для численного интегрирования используются партонные функ-
ции распределения fq(x,Q2

2) MSHT20nnlo_as118 [66] из LHAPDF [67].
Вычисление выполняется с помощью библиотеки libepa [43]. В ре-
зультате имеем

σ(pp→ pµ+µ−X) = 9.6 фб. (2.115)

Приведем также результат вычисления для электронов, который мо-
жет быть легко получен из наших формул

σ(pp→ pe+e−X) = 11.4 фб. (2.116)

Для оценки неопределенности полученных выражений вычислим их
со сдвинутым аргументом у партонной функции распределения:

fq(x,Q
2
2/2) :

{
σ(pp→ pµ+µ−X) = 7.7 фб,
σ(pp→ pe+e−X) = 9.1 фб,

(2.117)

fq(x, 2Q
2
2) :

{
σ(pp→ pµ+µ−X) = 11.5 фб,
σ(pp→ pe+e−X) = 13.6 фб.

(2.118)

При малых Q2
2 партонные функции распределения известны с мень-

шей точностью. Вклад от таких масштабов может быть проверен пу-
тем наложения более сильного ограничения на поперечный импульс:
Q2

2 ≈ q2⊥ < 1 ГэВ2. Имеем тогда 2.2 фб для случая рождения мюо-
нов и 2.6 фб для случая электронов. Это примерно 20% от неупруго-
го сечения (2.115), (2.116), что как раз порядка неопределенности от
партонных функций распределения (2.117). Стоит добавить, что по-
мимо партонных функций распределения вклад в неупругое сечение
могут давать также низкоэнергетические явления, в том числе резо-
нансы [68–70]. Вклад от таких эффектов ∼ 10− 15%. Однако мы не
стремимся к такому уровню точности, и учитываем только лидиру-
ющие вклады.
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2.8 Численные результаты и заключение
по главе

Сравнимполученные результаты с данными экспериментаATLAS.
Согласно [42]

σэксп.µµ+p = 7.2± 1.6 (stat.)± 0.9 (syst.)± 0.2 (lumi.) фб, (2.119)
σэксп.ee+p = 11.0± 2.6 (stat.)± 1.2 (syst.)± 0.3 (lumi.) фб. (2.120)

Складывая вклады упругого сечения из Раздела 2.2 и неупругого из
Раздела 2.7 получим

σтеор.µµ+p = 18± 3 фб, (2.121)
σтеор.ee+p = 22± 3 фб, (2.122)

где неопределенности были получены сравнением (2.115), (2.116) с
(2.117) и включают вклад от малых Q2

2.
Обсудим влияние фактора выживания S. Данный фактор приво-

дит к эффективному уменьшению сечения вследствие влияния силь-
ных взаимодействий при столкновении протонов с малым прицель-
ными параметром b. Значение S = 1 означало бы, что все события
произошли только за счет электромагнитного взаимодействия, и вы-
численное нами сечение отвечает экспериментальному. Для упруго-
го вклада с ростом инвариантной массы мюонной пары этот фактор
уменьшается: так дляW ∼ 100 ГэВ S = 0.9 [49]. В работе [42] при-
ведены значения сечения полуэксклюзивного процесса, вычислен-
ные путем Монте-Карло симуляций для значения фактора выжива-
ния S = 1 и S < 1 из работ [29, 47]. Использовались комбинирован-
ные результаты генераторов LPAIR и HERWIG. Видно, что сечение
уменьшается за счет фактора выживания в ≈ 1.5 раза. Результаты
вычисления с помощью SUPERCHIC4 [71] отличаются в пределах
одного стандартного отклонения.

Таким образом, для упругого процесса имеем уменьшение сече-
ния на 10 %, а для полуэксклюзивного, в который входит как упру-
гая часть, так и неупругая, уменьшение на 50 % [69]. Мы видим,
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что с учетом фактора выживания вычисленные по нашим теорети-
ческим формулам сечения согласуются с экспериментальными дан-
ными ATLAS в пределах 2 − 3 стандартных отклонений. При этом
фактор выживания для случая упругого процесса может быть легко
учтен без использования Монте-Карло моделирования.

В данной Главе был рассмотрен полуэксклюзивный процесс
p(γγ)p→ pµ+µ−X . Мы вывели аналитическое выражение для сече-
ния данного процесса. Для квазиупруго рассеиваемого протона бы-
ли учтены как электрический, так и магнитный форм-факторы. С
неупругой частью процесса мы работали в рамках партонной моде-
ли. Были полученыматрицыплотности и амплитудыфотон-фотонной
аннигиляции в мюоны в спиральном представлении. В конфигура-
ции с фотонами одинаковой поляризации была продемонстрирована
киральная аномалия, что может быть наблюдено на эксперименте.
Далее с помощью библиотеки libepa [43] было проведено числен-
ное интегрирование выведенных теоретических выражений для се-
чений как упругого, так и неупругого вклада в полуэксклюзивный
процесс. В рамках нашего подхода экспериментальные ограничения
накладываются естественным образом, что позволяет проводить вы-
числения без использования Монте-Карло. Полученный результат с
учетом фактора выживания находится в согласии с эксперименталь-
ным результатом ATLAS на уровне 2-3 стандартных отклонений.
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3 Вклад Z бозона в реакцию
pp→ pµ+µ−X

В данной Главе мы рассмотрим поправку к полуэксклюзивному
электромагнитному процессу p(γγ)p → pµ+µ−X от слабого взаи-
модействия. Древесные поправки описываются процессами с одним
и двумя калибровочными бозонами: p(ZZ)p → pµ+µ−X(Рис.3.5) и
p(γZ)p → pµ+µ−X (Рис.3.6). Мы также предполагаем, что в воз-
можном эксперименте будут отбираться события, в которых из ин-
вариантного объема мюонной пары исключена область около пика
Z, как это было в экспериментах ATLAS, используемых в предыду-
щих Главах.

Излучение калибровочного бозонаможет происходить как из упру-
го рассеянного протона, так и из развалившегося. Рассмотрим пер-
вый случай. Тогда имеем ограничение на виртуальность излученно-
го Z:

√
Q2 ≤ q̂ = 200 МэВ. При интегрировании по виртуальности

калибровочного бозона получим следующий вклад в сечение:∫ Q̂2

Q2dQ2

(Q2 +M 2
Z)

2
≈ q̂2

M 4
Z

∼ 10−5, (3.1)

поскольку пропагатор фотона заменится на пропагатор калибровоч-
ного бозона. Видно, что излучение массивного бозона выжившим
протоном сильно подавлено. Следовательно вклад, изображенный
на Рис.3.5, всегда подавлен. Однако в процессе, изображенном на
Рис.3.6, Z бозон может быть излучен протоном, который не выжи-
вает в столкновении. Такая поправка может оказаться значительной,
поскольку в этом случаеQ2 ограничена только квадратом инвариант-
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Рис. 3.5: Рождение мюонной пары в ZZ слиянии

ной массы рожденной парыW 2.
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Тогда ∫ W 2

Q2dQ2

(Q2 +M 2
Z)

2
∼ W 2

M 2
Z

∼ 1, (3.2)

дляW 2 ≥M 2
Z .

Вычисление вклада Z будем проводить в рамках подхода, разви-
того в предыдущей Главе. Будет получено аналитическое выражение
для дифференциального сечения полуэксклюзивного процесса с уче-
том поправки от слабого взаимодействия. Для фотона или Z бозона,
излученного неупруго рассеянным протоном, матрица плотности бу-
дет содержать дополнительный вклад от продольных поляризаций
фотона ρ00. Соответственно в спиральном представлении амплитуд
необходимо учитывать вклад |M±0|2 в сечение. Численное интегри-
рование будет выполнено с помощью библиотеки libepa.

Данная Глава основана на работе [62].

3.1 Неупругий процесс, идущий через
фотон-фотонную аннигиляцию

Данный процесс уже рассматривался нами в Главе 2. Теперь от-
сутствует ограничение на Q2

2 связанное с поперечным импульсом
мюонной пары. Вклад от поперечных поляризаций фотонов нами
уже был вычислен. Рассмотрим вклад от продольных поляризаций.

По определению матрица плотности ρ00 есть

ρ
(2)
00 = e

(2)
0µ [e

(2)
0ν ]

∗ρ(2)µν = −1− 4

q22
|p2e(2)(0)|2 = (3.3)

= −1 +
4

(q22)
2
(q̃2Ẽ2 − ω̃2p̃2z)

2,

где Ẽ2 - энергия кварка и p̃2z - продольная компонента импульса квар-
ка в системе центра инерции сталкивающихся фотонов. Сконструи-
руем единичные векторы Q1µ, Q2µ, которые определяют простран-
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ство двух фотонов с четырехимпульсами q1,q2 [63]

Q1µ = Aq1µ +Bq2µ, (3.4)
Q2µ = Cq1µ +Dq2µ.

Неизвестные коэффициентынайдем из условия ортогональности век-
торам q1µ, q2µ и нормировки:

Q1q1 = Q2q2 = 0, (3.5)
Q2

1 = Q2
2 = 1.

Разрешая эти уравнения, найдем выражения для коэффициентов A,
B, C и D и окончательно получим:

Q1µ =
−q21

(q1q2)2 − q21q
2
2

(q2µ − q1µ
q1q2
q21

), (3.6)

Q2µ =
−q22

(q1q2)2 − q21q
2
2

(q1µ − q2µ
q1q2
q22

).

Отметим, что размерность полученных векторов [1/m]. Прямым вы-
числением несложно проверить ортогональностьQ2µ (и точно так же
Q1µ) полученному ранее тензору Rµν (2.41):

Q2µRµν = 0, (3.7)

как и должно быть. Рассмотрим далее вектор Q2µ в системе центра
инерции фотонов. Учитывая, что

(q1q2)
2 − q21q

2
2 = q̃21(ω̃1 + ω̃2)

2, (3.8)

ω̃1 − ω̃2
q1q2
q22

= −q̃21
ω̃1 + ω̃2

ω̃2
2 − q̃21

,

q̃1 − q̃2
q1q2
q22

= q̃1ω̃2
ω̃1 + ω̃2

ω̃2
2 − q̃21

,

получим следующее простое соотношение:

Q2µ = ie
(2)
0µ . (3.9)
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Окончательно ρ(2)00 в инвариантном виде имеет вид:

ρ
(2)
00 = −1− 4

q22
(p2Q2)

2. (3.10)

Раскроем скобки в выражении (3.10):

ρ
(2)
00 = −1 +

4

(q1q2)2 − q21q
2
2

(p2q1 −
q1q2
2

)2. (3.11)

В лабораторной системе остаются справедливыми неравенства (2.48).
Тогда имеем

ρ
(2)
00 = 4

x2E2

ω2
2

. (3.12)

Интерференционные вклады ρ(2)±0, ρ
(2)
0± зануляется при интегриро-

вании по азимутальному углу ϕ2 рассеянного кварка. Действительно
для ρ(2)±0, например

ρ
(2)
+0 = ρ

(2)
0+ = − 4

q22
(p2e

(2)
+ )(p2e

(2)
0 ) = − 4

q22

√
p22⊥e

−iϕ2(p2e
(2)
0 ). (3.13)

Аналогичную зависимость от азимутального угла имеем для ρ(2)0− =

ρ
(2)
−0. Экспонента при интегрировании по ϕ2 от 0 до 2π даст ноль.
По определению матричный элементM+0 есть

M+0 = e
(1)
+µe

(2)
0νMµν, (3.14)

где Mµν определяется выражением (2.32), а вид e(2)0µ указан в (2.38).
Вычисление суммированного по поляризациям конечных мюонов
квадрата модуля |M+0|2 опирается на теже соотношениямежду гамма-
матрицами и скалярные произведения между четырехвекторами, ко-
торые использовались в Разделе 2.6. Приведем один из следов, фигу-
рирующий в |M+0|2. В тех же обозначениях для четырехимпульсов
фотонов и мюонов и для следов (формула (2.78)), которые использо-
вались в Разделе 2.6, имеем:

I1 = Sp
[
(k̂1 +mµ)(2k1e

(1)
+ − ê

(1)
+ q̂1)ê20(k̂2 +mµ)ê20× (3.15)

× (2k1e
(1)
− − q̂1ê

(1)
− )
]
.
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Упрощая следы с помощью коммутанционных соотношений и в при-
ближении q21 ≪ W 2 получим

I1
8

= 2(k1e1+)(k1e1−)
(
2(k1e20)(k2e20) + (k1k2)

)
− (3.16)

− 4(k1e1+)(k1e1−)(k2e20)(q1e20)− 2(k1e1+)(k1e1−)(k2q1)+

+ (k1q1)
(
(k1e1+)(k2e1−) + (k1e1−)(k2e1+)

)
−

− 16(k2e20)(q1e20)(k1q1)− (q1k2)(k1q1),

где также было использовано, что e220 = −1 и (e1+e1−) = 1. Наряду
со скалярными произведениями (2.85) для вычисления данного следа
потребуются также следующие:

k1e
(2)
0 = − i√

−q22
(q̃1ϵ+ kω̃2), q1e

(2)
0 = − i√

−q22
q̃1(q̃1 + ω̃2). (3.17)

С учетом также соотношения

ω̃2 =
W 2 −Q2

2

2W
, (3.18)

окончательно можно записать след I1 в виде:

I1 =
W 6

4Q2
2

v2 sin2 θ

(
(1 + v cos θ)

(
1− Q2

2

W 2

)2
− (3.19)

− 2
(
1 +

Q4
2

W 4

))
.

Вычисление I2 и I3 аналогично с точностью до замены k1 → k2 и
знака перед слагаемыми с множителем q̂1ê1−. Просуммированные по
поляризациям квадраты амплитуд |M+0|2 и |M−0|2 совпадают. После
довольно громоздких тригонометрическихпреобразований и приве-
дения подобных для вклада в сечение γγ → µ+µ− имеем

σ+0(γγ → µ+µ−) + σ−0(γγ → µ+µ−) =
16πα2W 2Q2

2

(W 2 +Q2
2)

3
. (3.20)
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Данное сечение подавлено в пределе Q2
2 ≪ W 2, как и должно быть.

Запишем сечение с учетом новых вкладов:

σpq→pµ+µ−q =
α

2π
Q2

qnp(ω1)σ(γγ
∗ → µ+µ−)(W 2, Q2

2)
Q2

2 − (ω2/3xγ)
2

ω2Q4
2

×

(3.21)
× dW 2dyQ2

2fq(x,Q
2
2)dx,

где γ∗ обозначает виртуальный фотон,

dσ(γγ∗ → µ+µ−) =
|M |2d cos θ

32πW 2(1 +Q2
2/W

2)
, (3.22)

|M |2 = 1

4

[
|M++|2 + |M+−|2 + |M−+|2 + |M−−|2 + 2|M+0|2 + 2|M−0|2

]
,

и
ω1 =

√
W 2 +Q2

2 · ey/2, ω2 =
√
W 2 +Q2

2 · e−y/2. (3.23)

Вводя вновь спектр эквивалентных фотонов протона np(ω) согласно
(2.112) и определяя

dnq(ω2)

dQ2
2

=
αQ2

q

πω2

1∫
xmin

Q2
2 − (ω2/3xγ)

2

Q4
2

fq(x,Q
2
2)dx, (3.24)

запишем проинтегрированное сечение p(γγ)q → pµ+µ−q:

σpq→pµ+µ−q =
1

2

s∫
Ŵ 2

dW 2

s−W 2∫
W4

36γ2s

σ(γγ∗ → µ+µ−)(W 2, Q2
2)dQ

2
2 (3.25)

×

1
2 ln

s

W2+Q2
2∫

1
2 ln (

W2+Q2
2

s ·max(1, m
2
p

9Q2
2
))

np(ω1)
dnq(ω2)

dQ2
2

dy.
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Для получения полуэксклюзивного сечения необходимо просумми-
ровать по валентным u, d и морским кваркам:

σpp→pµ+µ−X =
∑
q

σpq→pµ+µ−q. (3.26)

Обсудимпределыинтегрирования, которыемыиспользовали. Ниж-
ний предел по x определяется условием, что у кварка должно хватить
энергии xE излучить фотон с ω2:

xE ≥ ω2 =
√
W 2 +Q2

2 · e−y/2 → x ≥
√
W 2 +Q2

2

s
· e−y, (3.27)

где s = 4E2. С другой стороны из q22⊥ ≥ 0 имеем

Q2
2 −

ω2
2

3xγ
≥ 0 → x ≥

√
W 2 +Q2

2

s
· e−y mp

3
√
Q2

2

, (3.28)

где мы использовали (2.15) и

γq =
Eq

mq
=

3xE

mp
= 3xγ. (3.29)

Поэтому нижний предел по xmin = max{x|(3.27), x|(3.28)}.
Верхний предел по y получается из условия ω1 < E и W 2 =

4ω1ω2 +Q2
2:

y =
1

2
ln
ω1

ω2
=

1

2
ln

4ω2
1

W 2 +Q2
2

≤ 1

2
ln

s

W 2 +Q2
2

(3.30)

Нижний предел определяется аналогично и с учетом q22 ≥ 0.
Для Q2

2 имеем

Q2
2 = W 2 + 4ω1ω2 ≤ W 2 + s, Q2

2 ≥
ω2
2

9x2γ2
≥ W 4

36γ2s
, (3.31)

где мы использовали, что x ≤ 1. Нижний предел для W 2 мы взяли
Ŵ ≥ 10 ГэВ.
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Рис. 1: µ+µ− pair production in γγ (or γZ) fusion.

1

Рис. 3.7: Рождение мюонной пары в γγ + γZ

3.2 Вклад процесса γZ → µ+µ−

Поправки к лидирующему электромагнитному γγ∗ → µ+µ− про-
цессу происходят от интерференции с процессом γZ → µ+µ− и от
квадрата амплитуды γZ → µ+µ−:

|A|2 = |Aγγ|2 + 2ReAγγAγZ∗ + |AγZ |2. (3.32)

Лидирующий вклад |Aγγ|2 был вычислен выше. Поскольку

|A|2 ∼ ρ(1)aa ρ
(2)
bb |Mab|2, (3.33)

где a = ±, b = ±,0, учет процесса с Z приведет к изменению матри-
цы плотности и амплитуды.
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Начнем с матриц плотности [62]. Выпишем лагранжиан, описы-
вающий взаимодействие Z с кварками:

∆LqqZ =
e

sW cW
[
gqV
2
q̄γαq +

gqA
2
q̄γαγ5q]Zα, (3.34)

где

sW ≡ sin θW , cW ≡ cos θW , (3.35)
gqV = T q

3 − 2Qqs
2
W , gqA = T q

3 ,

e =
√
4πα, θW - угол Вайнберга, s2W ≈ 0.231 [72], T q

3 - слабый изо-
спин кварка. Вспоминая определения матриц плотности (2.31), име-
ем

ρ
γZ,(2)
αβ = − 1

2q22
[
gqV
2
Sp{(p̂′

2 +mq)γα(p̂2 +mq)γβ}+ (3.36)

+
gqA
2
Sp{(p̂′

2 +mq)γα(p̂2 +mq)γβγ5}],

ρ
ZZ,(2)
αβ = (3.37)

= − 1

2q22
Sp{(p̂′

2 +mq)(
gqV
2
γα +

gqA
2
γαγ5)(p̂2 +mq)(

gqV
2
γβ +

gqA
2
γβγ5)}.

Матрица ργZ,(2)αβ - матрица плотности, описывающая интерференцию
γZ, а матрица ρZZ,(2)

αβ описывает собственно вкладZZ. Начнем с ργZ,(2)αβ .
Видно, что с точностью до второго слагаемого с аксиальной кон-
стантой связи оно совпадает с вычисленной нами матрицей плотно-
сти (2.34). Слагаемое ∆ρ, пропорциональное аксиальной константе
∼ gqA, в лабораторной системе в ультрарелятивистском пределе име-
ет вид:

∆ρ = − 1

2q22
Sp{(p̂′

2 +mq)γα(p̂2 +mq)γβγ5} = (3.38)

=
−2i

q22
ϵµανβq2µϵ

(2)
+αp2νϵ

(2)∗
+β ≈ −2

q22
(Eq − ω2p),
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где учтено, что p′2 = p2 − q2 и что свертка симметричного тензора
p2µp2ν с полностью антисимметричным тензором ϵµανβ равна нулю.
Далее воспользуемся тем, что ω2 = (xE/p)q (формула (2.14)) и по-
лучим окончательно

∆ρ ≈ − 2

q22

xEω

γ2
=

2

ω2
2

(γ2 − 1)
xEω2

γ2
≈ 2

xE

ω2
, (3.39)

где мы воспользовалисьmp/p ≈ 1/γ, γ2−1 ≈ γ2. Для поляризацион-
ного состояния 00 вклад, порпорциональный аксиальной константе
gqA имеет вид ∼ ϵµανβϵ

(2)
0µ ϵ

(2)
0ν ≡ 0. Окончательно для разных спираль-

ностей имеем:

ρ
γZ,(2)
±± =

gqV
2
ρ
(2)
±± ± 2gqA

xE

ω2
, (3.40)

ρ
γZ,(2)
00 =

gqV
2
ρ
(2)
00 .

В пределе ω2 ≪ xE и с учетом ρ±± ∼ (xE/ω2)
2 (формула (2.49),

q22⊥ ≈ Q2
2) можем записать

ρ
γZ,(2)
ab ≈ gqV

2
ρ
(2)
ab . (3.41)

Для ρZZ,(2)
αβ аналогичным образом получим

ρ
ZZ,(2)
±± ≈ 1 + 2((gqV )

2 + (gqA)
2)
(xE
ω2

)2
± 4gqV g

q
A

xE

ω2
(3.42)

ρ
ZZ,(2)
00 ≈ 1 + 2((gqV )

2 + (gqA)
2)
(xE
ω2

)2
.

В приближении ω2 ≪ xE имеем

ρ
ZZ,(2)
αβ ≈ (gqV )

2 + (gqA)
2

4
ρ
(2)
ab . (3.43)

Суммарная амплитуда процесса γγ + γZ → µ+µ− → µ+µ−:

(Mγγ +MγZ)µp̄
′γµp, (3.44)
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где
(Mγγ +MγZ)µ = (3.45)

=
eQq

q22
q̄′γαqM

γγ
µα +

e

sW cW (q22 −M 2
Z)
q̄′[
gqV
2
γα +

gqA
2
γαγ5]qM

γZ
µα .

Выпишем входящие в эти выражения амплитуды

Mγγ
µα = e2[µ̄γµ

1

k̂1 − q̂1 −mµ

γαµ+ µ̄γα
1

q̂1 − k̂2 −mµ

γµµ], (3.46)

MγZ
µα = (3.47)

=
Qµe

2

sW cW
[
gµV
2
[µ̄γµ

1

k̂1 − q̂1 −mµ

γαµ+ µ̄γα
1

q̂1 − k̂2 −mµ

γµµ]+

+
gµA
2
[γα → γαγ5]] =

=
Qµ

sW cW

gµV
2
Mγ

µα +
Qµe

2

sW cW

gµA
2
[µ̄γµ

1

k̂1 − q̂1 −mµ

γαγ5µ+

+ µ̄γαγ5
1

q̂1 − k̂2 −mµγµµ
],

гдеQµ - электрический зарядмюона, gµV и g
µ
A - векторная и аксиальная

константы связи Z с мюонами. Подставим эти амплитуды в (3.45):
(Mγγ +MγZ)µ = (3.48)

= [q̄′γαq(
eQq

q22
+
gµV
2

eQµ

(sW cW )2(q22 −M 2
Z)

gqV
2
)+

+ q̄′γαγ5q
gµV
2

eQµ

(sW cW )2(q22 −M 2
Z)

gqA
2
]×

× e2[µ̄γµ
1

k̂1 − q̂1 −m
γαµ+ µ̄γα

1

q̂1 − k̂2 −m
γµµ]+

+ q̄′(
gqV
2
γα +

gqA
2
γαγ5)q

gµA
2

eQµ

(sW cW )(q22 −M 2
Z)

e2

sW cW
×

× [µ̄γµ
1

k̂1 − q̂1 −m
γαγ5µ+ µ̄γαγ5

1

q̂1 − k̂2 −m
γµµ].
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Докажем следующие утверждения [62]: 1) интерференция между
аксиально-векторной и векторной частью взаимодействия в ампли-
туде (3.48) тождественно равна нулю; 2) в пределе, когда инвариант-
ная масса мюонной пары много больше массы самого мюона, квад-
рат амплитуды аксиально-векторной части равен квадрату амплиту-
ды истинно-векторной части (с точностью до множителя в виде со-
ответствующих констант связи). Для доказательства первого пункта
умножим выражения в квадратных скобках на вектора поляризации
бозонов и обозначим слагаемые в первой и второй квадратных скоб-
ках какMV

ik иMA
ik соответственно. Воспользуемся тождеством

Sp[γAγB...γCγD] = Sp[γDγC ...γBγA] (3.49)

и распишем в спиральном представлении квадрат амплитуды (3.48),
опуская общий множитель:

MV
++[M

A
++]

∗ +MA
−−[M

V
−−]

∗ =MA
++[M

V
++]

∗ +MV
−−[M

A
−−]

∗ = 0,
(3.50)

MV
+0[M

A
+0]

∗ +MA
−0[M

V
−0]

∗ =MA
+0[M

V
+0]

∗ +MV
−0[M

A
−0]

∗ = 0,

MV
+−[M

A
+−]

∗ +MA
−+[M

V
−+]

∗ =MA
+−[M

V
+−]

∗ +MV
−+[M

A
−+]

∗ = 0.

Эти соотношения являются проявлением разного поведения вектор-
ной и аксиально-векторной амплитуд относительноP -преобразования:
MV

+−
P−→ −MV

−+ и MA
+−

P−→ MA
−+. Таким образом, интерференцион-

ное слагаемое точно зануляется и не дает вклада в сечение. Перей-
дем ко второму пункту. Необходимо показать, что произведение век-
торных токов γµγα совпадает с произведением аксиально-векторных
γµγαγ5. В безмассовом пределе mµ = 0 это утверждение очевидно.
При mµ ̸= 0 воспользуемся антикоммутацией гамма-матриц в чис-
лителях выражения (3.48):

µ̄1γµ(k̂1 − q̂1 +m) = µ̄1(2k1µ − γµq̂1), (3.51)
(q̂1 − k̂2 +m)γµµ̄2 = (q̂1γµ − 2k2µ)µ̄2. (3.52)

Следовательно зависимость от массы остается только вматрицах плот-
ности мюонов. Вклад ∼ k̂1k̂2 одинаковый для токов γµγα и γµγαγ5.
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Вклады ∼ m2 отличаются знаками для векторного и аксиально-
векторного случаев. Однако эти вклады пренебрежимо малы. Дей-
ствительно для |M±0|2, например, имеем:

|M±0|2 ∼ |e(1)±µe
(2)
0µMµν|2 ∼

m2
µ

W 2

sin2 θ
(1± v cos θ)2

→ 0, m2
µ ≪ W 2.

(3.53)
Аналогичное подавление слагаемого ∼ m2

µ/W
2 выполняется и для

|M±±|2. Следовательно мы возвращаемся к безмассовому пределу, в
котором утверждение очевидно.

Вышесказанное позволяет записать квадрат амплитуды с учетом
поправки от слабого взаимодействия в следующем виде:

|Mγγ +MγZ |2 ≡ κ|Mγγ|2, (3.54)

κ
(
Q2

2

)
= 1 + 2 · g

µ
V

Qµ
· g

q
V

Qq
· λ+

(gµV )
2
+ (gµA)

2

Q2
µ

· (g
q
V )

2
+ (gqA)

2

Q2
q

· λ2,

λ ≡ 1

(2sW cW )2 (1 +M 2
Z/Q

2
2)
. (3.55)

Таким образом, вклад от обмена Z бозоном может быть учтен умно-
жением на фактор κ вычисленных нами сечений σ±±, σ±∓ и σ±0 для
процесса γγ∗ → µ+µ−.

3.3 Численные результаты и заключение
по главе

Заменяя σ(γγ∗ → µ+µ−) в выражении (3.25) на κ(Q2
2)σ(γγ

∗ →
µ+µ−) и записывая его в дифференциальном по W 2 виде, получим
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[62]

dσpp→pµ+µ−X

dW
=

4αW

π

∑
q

Q2
q× (3.56)

s∫
W4

36γ2s

[σ(γγ∗ → µ+µ−)(W 2, Q2
2)]

W 2 +Q2
2

κ(Q2
2)dQ

2
2×

×

1
2 ln

s

W2+Q2
2∫

1
2 ln (

W2+Q2
2

s ·max(1, m
2
p

9Q2
2
))

ω1np(ω1)dy

1∫
xmin

Q2
2 − (ω2/3xγ)

2

Q4
2

fq(x,Q
2
2)dx,

где мы использовали равенство

ω2 = (W 2 +Q2
2)/4ω1. (3.57)

Для лучшей сходимости численного интегрирования поменяем по-
рядок интегрирования:

dσpp→pµ+µ−X

dW
=

4αW

π

∑
q

Q2
q× (3.58)

×
s∫

W4

36γ2s

[σ(γγ∗ → µ+µ−)(W 2, Q2
2)]

(W 2 +Q2
2)Q

4
2

κ(Q2
2)dQ

2
2×

×
1∫

W2+Q2
2

s ·max(1, mp

3

√
Q2
2

)

fq(x,Q
2
2)dx

1
2 ln

s

W2+Q2
2∫

1
2 ln (

W2+Q2
2

x2s
·max(1, m

2
p

9Q2
2
))

dy×

× ω1np(ω1)
[
Q2

2 − (ω2/3xγ)
2
]
.

Обсудим точность полученной формулы. Нижний предел по Q2
2

в формуле (3.58) значительно меньше, чем (1 ГэВ)2. В нем учиты-
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вается только кинематика. Однако при малых Q2
2 ≤ (1 ГэВ)2 вно-

сят большую неопределенность в партонные функции распределе-
ния fq(x,Q2

2). Численно эта область виртуальности дает ∼ 15% от
дифференциального сечения приW 2 = (20 ГэВ)2 и еще меньше при
больших инвариантных массах пары. Стоит подчеркнуть, что вклад
от слабой поправки почти не меняется в данной области поскольку
для Q2

2 ≤ (1 ГэВ)2

κ
(
Q2

2

)
≈ 1 + const1 ·

Q2
2

M 2
Z

+ const2 ·
Q4

2

M 4
Z

≈ 1. (3.59)

По этой же причине вклад от резонансов и низкоэнергетических эф-
фектов при Q2

2 ≤ (1 ГэВ))2 в партонные функции распределения
[68–70] не меняет величину слабой поправки.

Результаты численного интегрирования с помощью библиотеки
libepa [43] показаны на Рис.3.8. Из графика видно, что поправка не
дает значительного увеличения сечения. Однако мы можем усилить
вклад от обмена Z бозоном, если поставим нижнее ограничение на
Q2

2 > Q̂2
2 ближе к электрослабой школе, Q̂2

2 ∼ M 2
Z . Для таких боль-

ших величин виртуальности Z необходимо более жесткое ограниче-
ние на эксперименте по поперечному импульсу пары: pµµT > Q̂2 ≫
1 ГэВ. Отбор событий с такими pµµT удобен как с теоретической, так и
с экспериментальной точек зрения. Во-первых, мы избегаем низко-
энергетических эффектов, которые вносят большие неопределенно-
сти и достаточно плохо известны. Во-вторых, будут отбираться со-
бытия с хорошо различимыми мюонами с W 2 ≥ Q̂2

2. Величина по-
правки для различных Q̂2 приведена на Рис.3.9. Видно, что вклад от
слабого взаимодействия может достигать 20% при Q̂2 = 70 ГэВ.

В заключение рассмотрим поведение поправки от слабого взаи-
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модействия в пределе Q2
2 ≫M 2

Z . Тогда для фактора κ(Q2
2) имеем

κ
(
Q2

2

)
≈ 1 + 2 · g

µ
V

Qµ
· g

q
V

Qq
· 1

(2sW cW )2
+ (3.60)

(gµV )
2
+ (gµA)

2

Q2
µ

· (g
q
V )

2
+ (gqA)

2

Q2
q

· 1

(2sW cW )4
≈

≈
{
1.35 для q = u, ū, c, c̄;

2.76 для q = d, d̄, s, s̄, b, b̄.

В отличие от обратного предела малыхQ2
2 вклад от слабой поправки

достигает максимального значения и чувствителен к флэйвору квар-
ков.

Таким образом, в данной Главе мы проанализировали вклад от
обмена Z в сечение неупругой части полуэксклюзивного процесса
pp → pµ+µ−X . Развитый в предыдущих Главах подход был моди-
фицирован для учета слабого взаимодействия с нейтральным бозо-
ном. Это позволило оценить величину поправки от такого взаимо-
действия по отношению к лидирующему электромагнитному. Мы
проанализировали поведение величины κ(Q2

2), содержащей вклады
отZ и показали, что величина поправки может достигать 20%. Такой
вклад может быть потенциально наблюден, а кинематические огра-
ничения на виртуальностьQ2

2 обеспечивают преимущества как с тео-
ретической, так и с экспериментальной точек зрения.
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Рис. 3.8: Верхний график: дифференциальное сечение для γγ сли-
яния (пунктирная линия) и для γγ + γZ слияния с учетом слабого
взаимодействия (сплошная линия). Нижний график: их отношение.
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Рис. 3.9: Дифференциальные сечения для разных Q2

2. Стиль линий
такой же, как на рис.3.8.
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Заключение

Основные результаты
В заключение кратко перечислим основные результаты, получен-

ные в ходе работы над диссертацией.

1. Был рассмотрен ультрапериферический процесс p(γγ)p→
→ pµ+µ−p. В рамках метода эквивалентных фотонов была по-
лучена аналитическая формула для сечения данной реакции.
Выведенное выражение позволяет естественным образом на-
ложить экспериментальные ограничения на фазовый объем ко-
нечных продуктов. Было получено численное значение путем
прямого интегрирования без использования Монте-Карло си-
муляций с помощью библиотеки libepa. Был рассмотрен гипо-
тетический резонанс X с массой 28 ГэВ, который наблюдался
коллаборацией CMS. Из предположения о его взаимодействии
с мюонами и фотонами были выведены аналитические выра-
жения для сечения pp → pµ+µ−p через резонанс γγ → X →
µ+µ−. Из сравнения с экспериментальными данными ATLAS
было поставлено ограничение на взаимодействиеX с фотона-
ми.

2. Был изучен полуэксклюзивный процесс, в котором наряду с
упругим вкладом p(γγ)p→ pµ+µ−p имеется неупругий вклад
p(γγ)p → pµ+µ−X . В рамках спирального представления бы-
ли получены аналитические выражения для вкладов в сече-
ние такого процесса от разных поляризационных конфигура-
ций фотонов. Исследование проводилось в рамках партонной
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модели. Были выведеныматрицыплотности в спиральном пред-
ставлении для протона с учетом его электрического и магнит-
ного форм-факторов и для кварка с учетом партонных функций
распределения. Было показано, что при аннигиляции фотонов
с одинаковыми поперечными поляризациями проявляется ки-
ральная аномалия. Полученное выражение для полного сече-
ния полуэксклюзивного процесса было численно проинтегри-
ровано с ограничениями на фазовый объем конечных продук-
тов, которые были наложены экспериментом ATLAS при ис-
следовании данной реакции. С учетом фактора выживания и
неопределенностей в партонных функциях распределения при
низких энергиях полученный результат согласуется с экспери-
ментальным на уровне двух-трех стандартных отклонений.

3. В неупругуючасть полуэксклюзивного процесса pp→ pµ+µ−X
дает вклад слабое взаимодействие. Лидирующий борновский
вклад дается излучением Z бозона из неупруго рассеивающе-
гося протона. Былимодифицированыматрицыплотности и ам-
плитуды в спиральном представлении с учетом слабого взаи-
модействия. Вклад дает как интерференция диаграмм процес-
сов γγ → µ+µ− и γZ → µ+µ−, так и квадрат диаграммы про-
цесса γZ → µ+µ−. Было показано, что весь вклад от слабо-
го взаимодействия факторизуется в функцию от виртуально-
сти κ(Q2

2). Было вычислено дифференциальное по инвариант-
ной массе мюонной пары сечение с учетом обмена Z. При бо-
лее сильном ограничении снизу на поперечный импульс пары
при отборе событий на эксперименте поправка может дости-
гать 20 %. Такой отбор событий обладает как теоретическим,
так и экспериментальным преимуществом.

Перспективы дальнейшей разработки темы
Развитый в диссертации метод вычисления сечений имеет пер-

спективыприменения комногим ускорительным экспериментам, как
текущим, так и будущим. В работе [40] было рассмотрено рождение
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суперсимметричных заряженных частиц - чарджино χ±, в протон-
протонном столкновении через γγ аннигиляцию на планиируемых
ускорителях HE-LHC (

√
s = 27 ТэВ), SPPC (

√
s = 70 ТэВ) and FCC

(
√
s = 100 ТэВ). Изложенный в диссертации способ использовал-

ся для вычисления сечения рождения как для квазиупругого, так и
неупругого столкновения протонов.

Мы можем применять развитые формулы, чтобы вычислять не
только лепторождение через фотон-фотонную аннигиляцию.Действи-
тельно, полученные формулы для сечения факторизуются на соб-
ственно процесс рождения лептонов через аннигиляцию фотонов и
процесс излучения этих фотонов протонами. Поэтому мы можем за-
менить внутреннее сечения рождения лептонов в фотон-фотонном
слиянии на любой другой процесс, в том числе изучать вклад воз-
можнойНовойФизики. Как уже отмечалось, выведенные аналитиче-
ские выражения для сечения позволяют исследовать как квазиупру-
гие, так и неупругие процессы. При этом мы не прибегаем к Монте-
Карло симуляциям, а накладываем экспериментальные ограничения
непосредственно при интегрировании теоретических формул. При-
мер вычисления сечения рождения аксионов в γγ аннигиляции при-
веден в работе [43].
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